
Towards Improving the Resource Usage of SAT Solvers

Analyzing and Improving the Resource Usage of a

State of the Art SAT Solver

Norbert Manthey1

10.07.2010

1supported by the EMCL (European Master’s Program in Computational Logic)
Norbert Manthey Towards Improving the Resource Usage of SAT Solvers 10.07.2010 1 / 16



Outline

1 Introduction
2 Modern Memory Resources

Caches
Prefetching Unit

3 Analysis and Improvements
Major Improvements
Further Improvements
Overall Results

4 Conclusion

Norbert Manthey Towards Improving the Resource Usage of SAT Solvers 10.07.2010 2 / 16



Motivation - Why improve SAT Solver?

SAT Solvers can solve several problems

(Bounded Model Checking, Planning, Software Verification, ...)

How can sequential SAT solving be potentially improved?

No knowledge about resource utilization

No obvious metric to choose the best algorithm

Optimized version: in average only 40% of original runtime

Norbert Manthey Towards Improving the Resource Usage of SAT Solvers 10.07.2010 3 / 16



SAT Solving

Given: Conjunction of clauses (special cases: Unit, Binary)

Task: Find satisfying assignment for variables if possible.

Industrial problems: millions of variables and clauses (SAT Comp. 2009).

Used Solver: riss, 4400 lines C++, 64 bit

successor version qualified for SAT Race 2010

Used Techniques (only relevant mentioned):

Two-Watched-Literal Unit Propagation

Special treatment of binary clauses

Conflict Analysis, Learning and Backjumping

Norbert Manthey Towards Improving the Resource Usage of SAT Solvers 10.07.2010 4 / 16



Finding an Satisfying (Partial) Assignment

Using binary search tree. Question: Which clause to check next?

[¬2, ¬5, ¬6]

learned: [¬1, ¬2, ¬4]

Variable

Reason

1

-

2

C1

3

-

4

-

5

C2

6

C3

1

2

3
¬4

4

5

6

F=〈 [¬1, 2], [¬4, 5], [¬1, ¬4, 6], [¬2, ¬5, ¬6], [1, 3] 〉
Norbert Manthey Towards Improving the Resource Usage of SAT Solvers 10.07.2010 5 / 16



Modern Memory Resources

Facts:

SAT Solving involves lots of memory (avg. 220 MB)

No easy memory access pattern

Aim: improve speed of memory accesses

Utilize CPUs memory units better

Memory Hierarchy and Units:

Main Memory

Caches

Prefetching Unit

Translation Lookaside Buffers

Norbert Manthey Towards Improving the Resource Usage of SAT Solvers 10.07.2010 6 / 16



Accessing Data in the Memory Hierarchy

address

data

CPU m
ai

n 
m

em
or

y

L1
 ta

g

L1
 d

at
a

L2
 ta

g

L2
 d

at
a

Level Size Latency (in cycles)

Main Memory 2 GB 240

L2 Cache 1 MB 14

L1 Cache 64 KB + 64 KB 3

organized in lines (64 bytes)

Norbert Manthey Towards Improving the Resource Usage of SAT Solvers 10.07.2010 7 / 16



Prefetch Memory into Cache

Prefetching Unit:

Fetches data into the cache

Works in parallel to algorithm execution

Usually controlled by hardware (simple patterns)

Can be controlled by software instructions

Pro:

Reduces time to wait for main memory

Does not introduce additional latency

Contra:

Prefetching unnecessary data may evict important data

Norbert Manthey Towards Improving the Resource Usage of SAT Solvers 10.07.2010 8 / 16



Resource Consumption

Cycles Stall Cycles L2 Misses L2 Accesses

Program 100.0% 100.0% 100.0% 100.0%

Other Components 2.01% 1.80% 3.22% 3.16%

Conflict Analysis 5.74% 5.42% 6.27% 7.27%

Propagation 91.65% 92.62% 90.08% 88.94%

Propagate binary 5.71% 5.55% 7.95% 5.64%

Propagate long 83.86% 85.30% 78.17% 79.78%

Literal read access 45.80% 54.49 % 24.07% 12.57%

Maintain Watch List 24.26% 18.59% 2.19% 36.64%

Wait Rate: 82%, L2 Miss Rate: 40%

Norbert Manthey Towards Improving the Resource Usage of SAT Solvers 10.07.2010 9 / 16



Literal Access Distribution

Read Access: 60% on literal 0, 15% on literal 1, decreasing

Write Access: 25% on literal 0, 50% on literal 1, decreasing

Ratio: Write Accesses is sixth part of Read Accesses

Norbert Manthey Towards Improving the Resource Usage of SAT Solvers 10.07.2010 10 / 16



Apply Knowledge to Implementation

Watch lists

¬1

1

¬2

2

¬3

3

¬4

4

Watch lists

for literal 2
Clause Header

Activity

Size

Literals

Clause Literals

¬2

¬1

¬3

Prefetching : Prefetch all clauses of watched list

Flattened Clause: Combine Clause Header and Clause Literals

Cache Clause: Store a few literals in Clause Header

Norbert Manthey Towards Improving the Resource Usage of SAT Solvers 10.07.2010 11 / 16



Apply Knowledge to Implementation

Watch lists

¬1

1

¬2

2

¬3

3

¬4

4

Watch lists

for literal 2
Clause Header

Activity

Size

Literals

Clause Literals

¬2

¬1

¬3

Prefetching : Prefetch all clauses of watched list

Flattened Clause: Combine Clause Header and Clause Literals

Cache Clause: Store a few literals in Clause Header

Norbert Manthey Towards Improving the Resource Usage of SAT Solvers 10.07.2010 11 / 16



Apply Knowledge to Implementation

Watch lists

¬1

1

¬2

2

¬3

3

¬4

4

Watch lists

for literal 2
Clause Header

Activity

Size

Literals

Clause Literals

¬2

¬1

¬3

Prefetching : Prefetch all clauses of watched list

Flattened Clause: Combine Clause Header and Clause Literals

Cache Clause: Store a few literals in Clause Header

Norbert Manthey Towards Improving the Resource Usage of SAT Solvers 10.07.2010 11 / 16



Apply Knowledge to Implementation

Watch lists

¬1

1

¬2

2

¬3

3

¬4

4

Watch lists

for literal 2
Clause Header

Activity

Size

Literals

Clause Literals

¬2

¬1

¬3

Prefetching : Prefetch all clauses of watched list

Flattened Clause: Combine Clause Header and Clause Literals

Cache Clause: Store a few literals in Clause Header

Norbert Manthey Towards Improving the Resource Usage of SAT Solvers 10.07.2010 11 / 16



Further Improvements

Reduce memory overhead

Avoid System Allocator space overhead, use Slab Allocator

Compress Boolean array and Assignment

Compress literals in clause

Reduce memory accesses

Remove elements lazily from vector (Lazy Removal)

Reuse vectors instead of recreation (Reuse Vector)

Norbert Manthey Towards Improving the Resource Usage of SAT Solvers 10.07.2010 12 / 16



Slab Allocator

free

user

free

free

user

free

user

user

free

Properties:

Allocates big memory blocks

Separate them into slabs of fixed slab size

No overhead between slabs

Keeps track of free slabs (linked list)

Used slabs: User knows address, uses storage

Free slabs: Allocator uses storage for linked list

Suitable to store two Clause Headers on a single Cache Line

Norbert Manthey Towards Improving the Resource Usage of SAT Solvers 10.07.2010 13 / 16



Overview of Improvements and Combinations

 0

 20

 40

 60

 80

 100

 120

 140

total cycles work cycles L2 misses L2 accesses

va
lu

e 
in

 %

Basic Version
Cache Clause

Cache Clause + Slab
Prefetching

Lazy Removal
Reuse Vector
Combination

Norbert Manthey Towards Improving the Resource Usage of SAT Solvers 10.07.2010 14 / 16



Conclusion and Future Work

All presented improvements do not change search (micro optimization).

Rules to follow:

1 Increase access locality

2 Reduce number of memory accesses (cache line loads)

3 Use prefetching for difficult access pattern

4 use 2 MB pages (additional 10% improvement)

Future Work:

Analyze costs of Branch Miss-Prediction, effects on Cache Misses

Analyze effects of improvements on parallel solvers

Micro optimized solver needs 40% on average. Implementation is important.

Slab Allocator, Prefetching are not used in another solver.
Norbert Manthey Towards Improving the Resource Usage of SAT Solvers 10.07.2010 15 / 16



Thanks

Co-author: Ari Saptawijaya

SAT Solving Group:

Christoph Baldow, Friedrich Gräter,

Max Seeleman, Steffen Hölldobler

Operating System Group:

Hermann Härtig, Julian Stecklina

Norbert Manthey Towards Improving the Resource Usage of SAT Solvers 10.07.2010 16 / 16


	Introduction
	Modern Memory Resources
	Caches
	Prefetching Unit

	Analysis and Improvements
	Major Improvements
	Further Improvements
	Overall Results

	Conclusion

