
AQME’10 System Description

Luca Pulina and Armando Tacchella

University of Genoa – DIST - Viale Causa 13 – 16145 Genoa (Italy)

POS 2010 - Edinburgh, July 10, 2010

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 1 / 56

What is a quantified Boolean formula?

Consider a Boolean formula, e.g.,

(x1 ∨ x2) ∧ (¬x1 ∨ x2)

Adding existential “∃” and universal “∀” quantifiers, e.g.,

∀x1∃x2(x1 ∨ x2) ∧ (¬x1 ∨ x2)

yields a quantified Boolean formula (QBF).

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 2 / 56

What is the meaning of a QBF?

A QBF, e.g.,
∀x1∃x2(x1 ∨ x2) ∧ (¬x1 ∨ x2)

is true if and only if

for every value of x1 there exist a value of x2 such that
(x1 ∨ x2) ∧ (¬x1 ∨ x2) is propositionally satisfiable

Given any QBF ψ:
if ψ = ∀xϕ then ψ is true iff ϕ|x=0

∧ ϕ|x=1
is true

if ψ = ∃xϕ then ψ is true iff ϕ|x=0
∨ ϕ|x=1

is true

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 3 / 56

QBFs as a logic “assembly” language

This approach works fine as long as QBF solvers are robust!

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 4 / 56

QBFs as a logic “assembly” language

This approach works fine as long as QBF solvers are robust!

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 4 / 56

Are state-of-the-art QBF solvers robust?

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 5 / 56

Are state-of-the-art QBF solvers robust?

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 6 / 56

Are state-of-the-art QBF solvers robust?

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 7 / 56

Are state-of-the-art QBF solvers robust?

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 8 / 56

Are state-of-the-art QBF solvers robust?

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 9 / 56

Are state-of-the-art QBF solvers robust?

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 10 / 56

Are state-of-the-art QBF solvers robust?

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 11 / 56

Are state-of-the-art QBF solvers robust?

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 12 / 56

Are state-of-the-art QBF solvers robust?

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 13 / 56

Are state-of-the-art QBF solvers robust?

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 14 / 56

Goal: a robust QBF solver

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 15 / 56

Goal: a robust QBF solver

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 16 / 56

Goal: a robust QBF solver

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 17 / 56

Outline

1 Engineering a robust QBF solver

2 Designing a self-adaptive multi-engine

3 Experiments

4 Conclusions & future work

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 18 / 56

Outline

1 Engineering a robust QBF solver

2 Designing a self-adaptive multi-engine

3 Experiments

4 Conclusions & future work

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 19 / 56

Two approaches to yield a robust solver

Brute force
Given m QSAT instances and n solvers (engines)

1 Run each engine on a separate machine.
2 Stop all the engines as soon as one solves the instance, or all the engines exhaust

resources.
3 Continue with the next instance (if any).

Intelligence
Understand which engine is best for which QBFs

Fairly old idea: asset allocation in economics.

Looking for dynamically adaptive policies.

Algorithm portfolios: SAT, SMT, QBFs (see related work).

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 20 / 56

Two approaches to yield a robust solver

Brute force
Given m QSAT instances and n solvers (engines)

1 Run each engine on a separate machine.
2 Stop all the engines as soon as one solves the instance, or all the engines exhaust

resources.
3 Continue with the next instance (if any).

Intelligence
Understand which engine is best for which QBFs

Fairly old idea: asset allocation in economics.

Looking for dynamically adaptive policies.

Algorithm portfolios: SAT, SMT, QBFs (see related work).

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 20 / 56

Intelligence = Learning (to choose engines)

ϕ F (ϕ) .
.
.

E1

E2

En

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 21 / 56

Intelligence = Learning (to choose engines)

ϕ F (ϕ) .
.
.

E1

E2

En

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 22 / 56

Intelligence = Learning (to choose engines)

ϕ F (ϕ) .
.
.

E1

E2

En

result

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 23 / 56

Intelligence = Learning (to choose engines)

ϕ F (ϕ) .
.
.

E1

E2

En

?

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 24 / 56

Intelligence = Learning (to choose engines)

ϕ F (ϕ) .
.
.

E1

E2

En

?

Dataset
ϕ1 E2

ϕ2 E4

...
ϕm E1

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 25 / 56

Intelligence = Learning (to choose engines)

ϕ F (ϕ) .
.
.

E1

E2

En

?

Dataset
ϕ1 E2

ϕ2 E4

...
ϕm E1

Learning
Algorithm

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 26 / 56

Intelligence = Learning (to choose engines)

ϕ F (ϕ) .
.
.

E1

E2

En

!

Dataset
ϕ1 E2

ϕ2 E4

...
ϕm E1

Learning
Algorithm

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 27 / 56

Intelligence = Learning (to choose engines)

ϕ F (ϕ) .
.
.

E1

E2

EnDataset
ϕ1 E2

ϕ2 E4

...
ϕm E1

Learning
Algorithm

Choose a dataset

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 28 / 56

Intelligence = Learning (to choose engines)

ϕ F (ϕ) .
.
.

E1

E2

EnDataset
ϕ1 E2

ϕ2 E4

...
ϕm E1

Learning
Algorithm

Choose inducer(s)

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 29 / 56

Intelligence = Learning (to choose engines)

ϕ F (ϕ) .
.
.

E1

E2

EnDataset
ϕ1 E2

ϕ2 E4

...
ϕm E1

Learning
Algorithm

Choose engines

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 30 / 56

Choosing datasets

QBFLIB (www.qbflib.org), a repository of QBFs
I More than 15K formulas in a standard format.
I Artificially generated, toy problems, realistic encodings, challenge

problems, ...
QBF solvers competitions (www.qbfeval.org)

I A subset of the formulas available in QBFLIB.
I Up-to-date performance data about QBF solvers.

Our choice in AQME’10
The whole QBFEVAL’08 dataset (3326 fixed structured formulas).

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 31 / 56

www.qbflib.org
www.qbfeval.org

Choosing datasets

QBFLIB (www.qbflib.org), a repository of QBFs
I More than 15K formulas in a standard format.
I Artificially generated, toy problems, realistic encodings, challenge

problems, ...
QBF solvers competitions (www.qbfeval.org)

I A subset of the formulas available in QBFLIB.
I Up-to-date performance data about QBF solvers.

Our choice in AQME’10
The whole QBFEVAL’08 dataset (3326 fixed structured formulas).

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 31 / 56

www.qbflib.org
www.qbfeval.org

Representing QBFs

Basic features regarding:
Clauses: total number, number of Horn clauses, . . .
Variables: total number, existential and universal, . . .
Quantifiers: alternations, . . .
Literals: total number, average per clause, . . .
. . .

Combined features: ratios/products between basic features.

Our choice in AQME’10
109 cheap syntactic features for each QBF.

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 32 / 56

Representing QBFs

Basic features regarding:
Clauses: total number, number of Horn clauses, . . .
Variables: total number, existential and universal, . . .
Quantifiers: alternations, . . .
Literals: total number, average per clause, . . .
. . .

Combined features: ratios/products between basic features.

Our choice in AQME’10
109 cheap syntactic features for each QBF.

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 32 / 56

Choice of inductive models

Our desiderata:
Deal with numerical attributes (QBF features) and multiple class
labels (engines).
No assumptions of normality or (in)dependence among the
features.
No complex parameter tuning, thanks!

Our choice in AQME’10
Nearest-neighbour (1-NN)

We also implemented multivariate logistic regression, decision
trees, and decision rules.
We select 1-NN for its robustness w.r.t. the inductive models
above (see [Pulina and Tacchella, CP-DP’08]).

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 33 / 56

Choice of inductive models

Our desiderata:
Deal with numerical attributes (QBF features) and multiple class
labels (engines).
No assumptions of normality or (in)dependence among the
features.
No complex parameter tuning, thanks!

Our choice in AQME’10
Nearest-neighbour (1-NN)

We also implemented multivariate logistic regression, decision
trees, and decision rules.
We select 1-NN for its robustness w.r.t. the inductive models
above (see [Pulina and Tacchella, CP-DP’08]).

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 33 / 56

Choosing reasoning engines

QBFEVALs reveal major differences between
I Heuristic search based solvers.
I Hybrid solvers mainly based on other techniques (e.g., resolution,

skolemization), but possibly including search.
Which solvers to choose as basic engines?

I Only the best “search” and “hybrid”?
I All state of the art solvers?
I Something in between?

Our selection in AQME’10
Search-based: QUBE3.1, SSOLVE-UT, and 2CLSQ.

Hybrid: QUANTOR2.11, and SKIZZO-0.9-STD.

“Vintage engines” offer us a baseline to compare the current progress
in the development of QBF solvers.

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 34 / 56

Choosing reasoning engines

QBFEVALs reveal major differences between
I Heuristic search based solvers.
I Hybrid solvers mainly based on other techniques (e.g., resolution,

skolemization), but possibly including search.
Which solvers to choose as basic engines?

I Only the best “search” and “hybrid”?
I All state of the art solvers?
I Something in between?

Our selection in AQME’10
Search-based: QUBE3.1, SSOLVE-UT, and 2CLSQ.

Hybrid: QUANTOR2.11, and SKIZZO-0.9-STD.

“Vintage engines” offer us a baseline to compare the current progress
in the development of QBF solvers.

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 34 / 56

Choosing reasoning engines

QBFEVALs reveal major differences between
I Heuristic search based solvers.
I Hybrid solvers mainly based on other techniques (e.g., resolution,

skolemization), but possibly including search.
Which solvers to choose as basic engines?

I Only the best “search” and “hybrid”?
I All state of the art solvers?
I Something in between?

Our selection in AQME’10
Search-based: QUBE3.1, SSOLVE-UT, and 2CLSQ.

Hybrid: QUANTOR2.11, and SKIZZO-0.9-STD.

“Vintage engines” offer us a baseline to compare the current progress
in the development of QBF solvers.

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 34 / 56

Outline

1 Engineering a robust QBF solver

2 Designing a self-adaptive multi-engine

3 Experiments

4 Conclusions & future work

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 35 / 56

Designing a self-adaptive multi-engine

How could AQME’10 learn by its incorrect predictions?

Retraining: adaptation schema applied to engine selection policies
whenever they fail to give good predictions.

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 36 / 56

Designing a self-adaptive multi-engine

How could AQME’10 learn by its incorrect predictions?

Retraining: adaptation schema applied to engine selection policies
whenever they fail to give good predictions.

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 36 / 56

Retraining

ϕ F (ϕ) .
.
.

E1

E2

EnDataset

ϕ1 E2

ϕ2 E4

...
ϕm E1

Learning
Algorithm

Choose

Choose

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 37 / 56

Retraining

ϕ F (ϕ) .
.
.

E1

E2

EnDataset

ϕ1 E2

ϕ2 E4

...
ϕm E1

Learning
Algorithm

Choose

Choose

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 38 / 56

Retraining

ϕ F (ϕ) .
.
.

E1

E2

EnDataset

ϕ1 E2

ϕ2 E4

...
ϕm E1

Learning
Algorithm

Choose

Choose

ϕm+1 E1

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 39 / 56

Retraining

ϕ F (ϕ) .
.
.

E1

E2

EnDataset

ϕ1 E2

ϕ2 E4

...
ϕm E1

Learning
Algorithm

Choose

Choose

ϕm+1 E1

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 40 / 56

Retraining

ϕ F ′(ϕ) .
.
.

E1

E2

EnDataset

ϕ1 E2

ϕ2 E4

...
ϕm E1

Learning
Algorithm

Choose

Choose

ϕm+1 E1

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 41 / 56

Retraining policies

Critical points for AQME’10 performances:
How much CPU time is granted to each engine.
Which engine is called for retraining.

Policies in AQME’10
Granted CPU time: “Trust the Predicted Engine”

- A fixed amount of CPU time is granted to the predicted solver.
- If it fails, another engine is called (following the engine selection

policy), with a granted amount of CPU time until the solver solves
the input formula.

- If the formula is not solved, the originally predicted engine is fired,
with the time limit assigned to the remaining time.

Engine selection: The engine to fire is selected according to the
QBFEVAL’06 ranking.

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 42 / 56

Retraining policies

Critical points for AQME’10 performances:
How much CPU time is granted to each engine.
Which engine is called for retraining.

Policies in AQME’10
Granted CPU time: “Trust the Predicted Engine”

- A fixed amount of CPU time is granted to the predicted solver.
- If it fails, another engine is called (following the engine selection

policy), with a granted amount of CPU time until the solver solves
the input formula.

- If the formula is not solved, the originally predicted engine is fired,
with the time limit assigned to the remaining time.

Engine selection: The engine to fire is selected according to the
QBFEVAL’06 ranking.

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 42 / 56

AQME’10 architecture

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 43 / 56

AQME’10 architecture

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 44 / 56

AQME’10 architecture

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 45 / 56

AQME’10 architecture

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 46 / 56

AQME’10 architecture

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 47 / 56

AQME’10 architecture

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 48 / 56

AQME’10 architecture

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 49 / 56

Outline

1 Engineering a robust QBF solver

2 Designing a self-adaptive multi-engine

3 Experiments

4 Conclusions & future work

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 50 / 56

AQME’10@QBFEVAL’10

Solver MAIN 2QBF SH RND
Time # Time # Time # Time

AIGSOLVE 329 22786.60 NA NA 37 1140.01 NA NA
AQME’10 434 33346.60 128 2323.11 11 30132.40 407 20078.90
DEPQBF 370 21515.30 24 690.42 4 41448.00 342 12895.10
DEPQBF-PRE 356 18995.90 51 877.02 4 33371.90 343 9438.62
NENOFEX 225 13786.90 50 3545.65 3 30194.20 149 34502.80
QMAIGA 361 43058.10 NA NA NA NA NA NA
QUANTOR3.1 205 6711.37 48 3689.30 5 57960.90 134 2830.97
STRUQS’10 240 32839.70 132 1399.30 5 26257.30 117 15480.40

Best1 solver in MAIN and RND tracks.
Good performance in 2QBF and SH tracks.

1In the sense of numbers of problems solved within the CPU time limit
Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 51 / 56

Looking inside AQME’10

MAIN 2QBF SH RND

2CLSQ 28 – 1 –
QUANTOR2.11 106 24 1 –
QUBE3.1 145 11 2 146
SKIZZO 116 80 6 63
SSOLVE-UT 39 13 1 198
Retrainings 22 3 – 15

Self-adaptation based on the characteristics of the test set.

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 52 / 56

Looking inside AQME’10

MAIN 2QBF SH RND

2CLSQ 28 – 1 –
QUANTOR2.11 106 24 1 –
QUBE3.1 145 11 2 146
SKIZZO 116 80 6 63
SSOLVE-UT 39 13 1 198
Retrainings 22 3 – 15

Self-adaptation based on the characteristics of the test set.

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 52 / 56

Outline

1 Engineering a robust QBF solver

2 Designing a self-adaptive multi-engine

3 Experiments

4 Conclusions & future work

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 53 / 56

Conclusions

A multiengine solver is a robust alternative to current
state-of-the-art QBF solvers.
Good performance achieved also using engines date back 2006.
Retraining algorithm increases the performances in terms of
number of solved formula.
Performances “limited” by the State-of-the-art solver, i.e., the
ideal solver that always fares the best time among all the
considered solvers.

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 54 / 56

Future work

Mechanism for the automatic integration of new engines.
Implementation of new learning algorithms (see, e.g., D. Stern et
al., AAAI 2010).
Integration between different algorithms, not black-box engines
(see, e.g., Pulina and Tacchella, FROCOS 2009).

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 55 / 56

Thank you!

Luca Pulina (UNIGE) AQME’10 System Description POS’10 - Edinburgh 56 / 56

	Engineering a robust QBF solver
	Designing a self-adaptive multi-engine
	Experiments
	Conclusions & future work

