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What is a quantified Boolean formula?

Consider a Boolean formula, e.g.,

(x1 ∨ x2) ∧ (¬x1 ∨ x2)

Adding existential “∃” and universal “∀” quantifiers, e.g.,

∀x1∃x2(x1 ∨ x2) ∧ (¬x1 ∨ x2)

yields a quantified Boolean formula (QBF).
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What is the meaning of a QBF?

A QBF, e.g.,
∀x1∃x2(x1 ∨ x2) ∧ (¬x1 ∨ x2)

is true if and only if

for every value of x1 there exist a value of x2 such that
(x1 ∨ x2) ∧ (¬x1 ∨ x2) is propositionally satisfiable

Given any QBF ψ:
if ψ = ∀xϕ then ψ is true iff ϕ|x=0

∧ ϕ|x=1
is true

if ψ = ∃xϕ then ψ is true iff ϕ|x=0
∨ ϕ|x=1

is true
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QBFs as a logic “assembly” language

This approach works fine as long as QBF solvers are robust!
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Are state-of-the-art QBF solvers robust?
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Goal: a robust QBF solver
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Outline

1 Engineering a robust QBF solver

2 Designing a self-adaptive multi-engine

3 Experiments

4 Conclusions & future work
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Two approaches to yield a robust solver

Brute force
Given m QSAT instances and n solvers (engines)

1 Run each engine on a separate machine.
2 Stop all the engines as soon as one solves the instance, or all the engines exhaust

resources.
3 Continue with the next instance (if any).

Intelligence
Understand which engine is best for which QBFs

Fairly old idea: asset allocation in economics.

Looking for dynamically adaptive policies.

Algorithm portfolios: SAT, SMT, QBFs (see related work).
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Intelligence = Learning (to choose engines)

ϕ F (ϕ) .
.
.

E1

E2

En
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Intelligence = Learning (to choose engines)
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Choosing datasets

QBFLIB (www.qbflib.org), a repository of QBFs
I More than 15K formulas in a standard format.
I Artificially generated, toy problems, realistic encodings, challenge

problems, ...
QBF solvers competitions (www.qbfeval.org)

I A subset of the formulas available in QBFLIB.
I Up-to-date performance data about QBF solvers.

Our choice in AQME’10
The whole QBFEVAL’08 dataset (3326 fixed structured formulas).
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Representing QBFs

Basic features regarding:
Clauses: total number, number of Horn clauses, . . .
Variables: total number, existential and universal, . . .
Quantifiers: alternations, . . .
Literals: total number, average per clause, . . .
. . .

Combined features: ratios/products between basic features.

Our choice in AQME’10
109 cheap syntactic features for each QBF.
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Choice of inductive models

Our desiderata:
Deal with numerical attributes (QBF features) and multiple class
labels (engines).
No assumptions of normality or (in)dependence among the
features.
No complex parameter tuning, thanks!

Our choice in AQME’10
Nearest-neighbour (1-NN)

We also implemented multivariate logistic regression, decision
trees, and decision rules.
We select 1-NN for its robustness w.r.t. the inductive models
above (see [Pulina and Tacchella, CP-DP’08]).
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Choosing reasoning engines

QBFEVALs reveal major differences between
I Heuristic search based solvers.
I Hybrid solvers mainly based on other techniques (e.g., resolution,

skolemization), but possibly including search.
Which solvers to choose as basic engines?

I Only the best “search” and “hybrid”?
I All state of the art solvers?
I Something in between?

Our selection in AQME’10
Search-based: QUBE3.1, SSOLVE-UT, and 2CLSQ.

Hybrid: QUANTOR2.11, and SKIZZO-0.9-STD.

“Vintage engines” offer us a baseline to compare the current progress
in the development of QBF solvers.
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Outline

1 Engineering a robust QBF solver

2 Designing a self-adaptive multi-engine

3 Experiments

4 Conclusions & future work
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Designing a self-adaptive multi-engine

How could AQME’10 learn by its incorrect predictions?

Retraining: adaptation schema applied to engine selection policies
whenever they fail to give good predictions.
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Retraining
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Retraining
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Retraining policies

Critical points for AQME’10 performances:
How much CPU time is granted to each engine.
Which engine is called for retraining.

Policies in AQME’10
Granted CPU time: “Trust the Predicted Engine”

- A fixed amount of CPU time is granted to the predicted solver.
- If it fails, another engine is called (following the engine selection

policy), with a granted amount of CPU time until the solver solves
the input formula.

- If the formula is not solved, the originally predicted engine is fired,
with the time limit assigned to the remaining time.

Engine selection: The engine to fire is selected according to the
QBFEVAL’06 ranking.
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AQME’10 architecture
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AQME’10@QBFEVAL’10

Solver MAIN 2QBF SH RND
# Time # Time # Time # Time

AIGSOLVE 329 22786.60 NA NA 37 1140.01 NA NA
AQME’10 434 33346.60 128 2323.11 11 30132.40 407 20078.90
DEPQBF 370 21515.30 24 690.42 4 41448.00 342 12895.10
DEPQBF-PRE 356 18995.90 51 877.02 4 33371.90 343 9438.62
NENOFEX 225 13786.90 50 3545.65 3 30194.20 149 34502.80
QMAIGA 361 43058.10 NA NA NA NA NA NA
QUANTOR3.1 205 6711.37 48 3689.30 5 57960.90 134 2830.97
STRUQS’10 240 32839.70 132 1399.30 5 26257.30 117 15480.40

Best1 solver in MAIN and RND tracks.
Good performance in 2QBF and SH tracks.

1In the sense of numbers of problems solved within the CPU time limit
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Looking inside AQME’10

MAIN 2QBF SH RND

2CLSQ 28 – 1 –
QUANTOR2.11 106 24 1 –
QUBE3.1 145 11 2 146
SKIZZO 116 80 6 63
SSOLVE-UT 39 13 1 198
Retrainings 22 3 – 15

Self-adaptation based on the characteristics of the test set.
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Conclusions

A multiengine solver is a robust alternative to current
state-of-the-art QBF solvers.
Good performance achieved also using engines date back 2006.
Retraining algorithm increases the performances in terms of
number of solved formula.
Performances “limited” by the State-of-the-art solver, i.e., the
ideal solver that always fares the best time among all the
considered solvers.
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Future work

Mechanism for the automatic integration of new engines.
Implementation of new learning algorithms (see, e.g., D. Stern et
al., AAAI 2010).
Integration between different algorithms, not black-box engines
(see, e.g., Pulina and Tacchella, FROCOS 2009).
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Thank you!
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