Enhanced Gaussian Elimination in DPLL-based SAT Solvers

MATE SOOS

INRIA SALSA Team

10th of July 2010

MATE SOOS (INRIA SALSA Team)

Gauss in SAT solvers

10th of July 2010 1 / 23

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Table of Contents

MATE SOOS (INRIA SALSA Team)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Outline

- Cryptographic problems
- Gaussian elimination

Gaussian elimination in SAT Solvers

- Datastructures, algorithms
- Row and Column Elimination by XOR
- Independent sub-matrixes
- Skipping parts of matrix to treat

3 Results

Conclusions

3

- 4 同 ト - 4 同 ト

DPLL-based SAT solvers

Solves a problem in CNF

CNF is an "and of or-s"

$$\neg x_1 \lor \neg x_3 \qquad \neg x_2 \lor x_3 \qquad x_1 \lor x_2$$

Uses $\mathsf{DPLL}(\varphi)$ algorithm

- $\textbf{0} \ \ \text{If formula} \ \ \varphi \ \text{is trivial, return SAT/UNSAT}$
- 2 Picks a variable v to branch on

$$\bigcirc v := \texttt{true}$$

- **③** Simplifies formula to φ' and calls $\mathsf{DPLL}(\varphi')$
- if SAT, output SAT
- **(**) if UNSAT, v := false
- **②** Simplifies formula to φ'' and calls $\mathrm{DPLL}(\varphi'')$
- if SAT, output SAT
- If UNSAT, output UNSAT

Cryptographic problems

Crypto problems are given in ANF

 $0 = ab \oplus b \oplus bc$ $0 = a \oplus d \oplus c \oplus bd$ $0 = bc \oplus cd \oplus bd$ $0 = d \oplus ab \oplus 1$

Methods to solve ANF

Put into matrix, Gauss eliminate:

ab	bc	cd	bd	a	b	c	d	aug	
[1	1	0	0	0	1	0	0	0]	
0	0	0	1	1	0	1	1	0	
0	1	1	1	0	0	0	0	0	
1	0	0	0	0	0	0	1	1	

- Onvert to CNF. Notice: it's same as above, but ab = a × b is included, and less info (rows) needed
- Other methods (e.g. F4/F5)

- 4 同 6 4 日 6 4 日 6 - 日

Gaussian elimination

Theory

- Solving a Gaussian elim. problem with DPLL-based SAT solvers is exponentially difficult
- Even though Gaussian elimination is poly-time
- \rightarrow Theoretically, Gauss. elim in SAT solvers is useful

Practise

- Designers of SAT solvers have grown accustomed to solving worst-case exponential problems *really* fast
- But Gauss is different:

	Matrix size: $n imes n$, MiniSat time (s)											
	20	22	24	26	28	30	32	34	36	38		
	0.02	0.09	0.22	0.8	1.84	8.2	30.9	90.0	331.3	1539.9		
•	Practical usefulness is still elusive											
							< c	□ ▶ ∢ @ ▶	< ■ > < ■	▶ ≣ ∽Q(

Gauss and Crypto

The two approaches

- Only-Gauss approach problem: too many rows needed, too large matrix
- Only-SAT approach problem: Can't "see" the matrix, can't find truths from it

A hybrid approach

Executing Gauss. elim. at every decision step in the SAT solver, we can mix the two approaches

Outline

Context

- Cryptographic problems
- Gaussian elimination

2 Gaussian elimination in SAT Solvers

- Datastructures, algorithms
- Row and Column Elimination by XOR
- Independent sub-matrixes
- Skipping parts of matrix to treat

B Results

Conclusions

伺 ト く ヨ ト く ヨ ト

Implementation													
	A-matrix						N-matrix						
-	v10 [1	v81	v91	v12 1	aug 0]	_	v10 1	v81	v91	v12 1	aug 0]	_	
	$\begin{vmatrix} 0\\0 \end{vmatrix}$	$\begin{array}{c} 0 \\ 1 \end{array}$	$\begin{array}{c} 1 \\ 0 \end{array}$	1 1	1 1		0	$\begin{array}{c} 0 \\ 1 \end{array}$	$\begin{array}{c} 1\\ 0\end{array}$	1 1	1 1		
	0	1	0	0	1		0	1	0	0	1		

- 34

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Implementation												
	with	A v8 a	A-mat Issign	rix ed to	true		N-matrix					
	$v10 \\ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	v8 	$egin{array}{c} v9 \ 1 \ 1 \ 0 \ 0 \end{array}$	$\begin{array}{c c}v12\\1\\1\\1\\0\end{array}$	aug 1 1 0 0		$v10 \\ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$egin{array}{c} v8 \ 1 \ 0 \ 1 \ 1 \ 1 \ 1 \ \end{array}$	$v9 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0$	$\begin{array}{c c}v12\\1\\1\\1\\0\end{array}$	aug 0 1 1 1	

< ロ > < 同 > < 回 > < 回 > < 回 > <

Impleme	entati	on									
	with	trix ed to	true		N-matrix						
Resultin	$v10 \\ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	v8 	v9 1 0 0 5e:	$\begin{array}{c c}v12\\1\\1\\1\\0\end{array}$	aug 1 1 0 0	$v10$ $\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$ $\oplus v12$	v8 1 0 1 1	v9 1 1 0 0	$\begin{array}{c c} v12 \\ 1 \\ 1 \\ 1 \\ 0 \\ \end{array}$	aug 0 1 1 1	

- 34

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Implementation		
A-matrix with $v8$ assigned to true	N-matrix	
$v10 v8 v9 v12 \text{aug} \\ \begin{bmatrix} 1 & - & 1 & 1 & & 1 \\ 0 & - & 1 & 1 & & 1 \\ 0 & - & 0 & 1 & & 0 \\ 0 & - & 0 & 0 & & 0 \end{bmatrix}$ Resulting xor-clause: v12 = false	$\begin{array}{cccccccc} v10 & v8 & v9 & v12 & aug \\ \begin{bmatrix} 1 & 1 & 1 & 1 & & 0 \\ 0 & 0 & 1 & 1 & & 1 \\ 0 & 1 & 0 & 1 & & 1 \\ 0 & 1 & 0 & 0 & & 1 \end{bmatrix} \\ \leftarrow & v8 \oplus v12 \end{array}$	

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Row and Column Elimination by XOR — RCX

Example

• If variable *a* is not present anywhere but in 2 XOR-s:

 $a \oplus b \oplus c \oplus d = \texttt{false}$ $a \oplus f \oplus g \oplus h = \texttt{false}$

• Then we can remove *a*, the two XOR-s, and add the XOR:

 $f\oplus g\oplus h\oplus b\oplus c\oplus d=\texttt{false}$

Theory

- This is variable elimination at the XOR-level
- It is equivalent to VE at CNF level
- But it doesn't make sense to do this at CNF level:
 - \rightarrow results in far more (and larger) clauses
- For us it helps: removes 1 column (a) and one row from the matrix

Independent sub-matrixes

Reasoning

- Gaussian elimination is approx. $O(nm^2)$ algorithm
- Making two smaller matrixes from one bigger one leads to speedup
- If matrix has non-connected components, cutting up is orthogonal to algorithm output

Independent sub-matrixes

Algorithm

Let us build a graph from the XOR-s:

- Vertexes are the variables
- Edge runs between two vertexes if they appear in an XOR
- Independent graph components are extracted

Advantages

- In case of 2 roughly equal independent sub-matrixes: $cnm^2 \to 2c'(n/2)(m/2)^2 = c'nm^2/4$
- Better understanding of problem structure:
 - E.g. number of shift registers in a cipher
 - Number of S-boxes in cipher
 - Problem similarities

Not treating parts of the matrix

Reasoning

- Let's assume the leftmost column updated is the c^{th}
- Let's assume the topmost "1" in this column was in row r
- ullet Then, the rows above r cannot have changed their leading 1

Example

MATE SOOS (INRIA SALSA Team)

Auto turn-off

- If Gauss. doesn't bring enough benefits, it is switched off
- Performance is measured by percentage of times confl/prop is generated
- Conflict is preferred we can return immediately

▲ロ▶ ▲掃▶ ▲ヨ▶ ▲ヨ▶ - ヨ - めぬ⊙

More efficient data structure

Data structure

- Bits are packed faster row xor/swap
- Augmented column is non-packed faster checking
- Two matrixes are stored as an interlaced continuous array
- $A[0][0] \dots A[0][n], N[0][0] \dots N[0][n], \dots A[m][0] \dots N[m][n]$

Advantages

- When doing row-xor both matrixes' rows are xor-ed
- When doing row-swap both matrixes' rows are swapped
- We can now operate on one continuous data in both operations

Gauss in SAT solvers

Outline

Context

- Cryptographic problems
- Gaussian elimination

Gaussian elimination in SAT Solvers

- Datastructures, algorithms
- Row and Column Elimination by XOR
- Independent sub-matrixes
- Skipping parts of matrix to treat

3 Results

Conclusions

< ロ > < 同 > < 回 > < 回 >

Results overview

Before: "Extending SAT Solvers to Cryptographic Problems"

- Worked only on few instances
- Had to be tuned for each instance
- Gave approx. 5-10% speedup

Now: "Enhanced Gaussian Elimination in DPLL-based SAT Solvers"

- Matrix discovery is automatic
- Less tuning necessary turn-off is automatic
- Works on more types of instances
- Gives up to 30%-45% speedup

・ 同 ト ・ ヨ ト ・ ヨ ト

Bivium										
no. help bits	55	54	53	52	51	50				
no RCX $+$ no Gauss	0.69	1.26	1.38	2.19	6.25	10.40				
RCX + no Gauss	0.65	0.89	1.30	2.36	5.76	8.87				
no $RCX + Gauss$	0.55	0.91	1.06	1.89	3.87	7.76				
RCX + Gauss	0.52	0.69	0.90	1.85	3.81	6.20				
Vars removed on avg	36.27	36.42	37.30	37.07	38.32	37.94				

Table: Avg. time (in sec.) to solve 100 random problems

Bivium										
no. help bits	54	53	52	51	50					
RCX	0.89	1.30	2.36	5.76	8.87					
Gauss + RCX	0.69	0.90	1.85	3.81	6.20					
Trivium										
no. help bits	157	156	155	154	153					
RCX	66.57	86.42	146.17	261.75	472.27					
$Gauss{+}RCX$	40.57	68.16	84.13	146.35	259.07					

Table: Avg. time (in sec.) to solve 100 random problems

◆ロ > ◆母 > ◆臣 > ◆臣 > ● ● ● ●

HiTag2									
no. help bits 1	5 14	13	12	11	10	9			
RCX 4.7	'8 11.73	30.70	76.44	233.61	719.86	1666.99			
Gauss+RCX 4.7	6 11.64	29.03	77.19	220.64	701.46	1636.77			
Grain									
no. help bits	109		108	10	7	106			
RCX	168.51	2	291.29 5		14	1123.08			
$Gauss{+}RCX$	193.09	3	59.58	608.	608.47				

Table: Avg. time (in sec.) to solve 100 random problems

Outline

Context

- Cryptographic problems
- Gaussian elimination

Gaussian elimination in SAT Solvers

- Datastructures, algorithms
- Row and Column Elimination by XOR
- Independent sub-matrixes
- Skipping parts of matrix to treat

B Results

Conclusions

3

< ロ > < 同 > < 回 > < 回 >

Conclusions

Conclusions

- Gaussian elimination can bring benefits for specific applications
- Better understanding of the problem could be gained

Possible future work

- Automatic cut-off value finding
- Better heuristics to decide when to execute Gaussian elim.
- Add support for sparse matrix representation

通 ト く ヨ ト く ヨ ト

Thank you for your time

MATE SOOS (INRIA SALSA Team)

Gauss in SAT solvers

10th of July 2010 23 / 23

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >