Enhanced Gaussian Elimination in DPLL-based SAT Solvers

Mate Soos
INRIA SALSA Team
10th of July 2010

Table of Contents

(1) Context
(2) Gaussian elimination in SAT Solvers
(3) Results
(4) Conclusions

Outline

(1) Context

- Cryptographic problems
- Gaussian elimination
(2) Gaussian elimination in SAT Solvers
- Datastructures, algorithms
- Row and Column Elimination by XOR
- Independent sub-matrixes
- Skipping parts of matrix to treat
(3) Results
(4) Conclusions

DPLL-based SAT solvers

Solves a problem in CNF

CNF is an "and of or-s"

$$
\neg x_{1} \vee \neg x_{3} \quad \neg x_{2} \vee x_{3} \quad x_{1} \vee x_{2}
$$

Uses $\operatorname{DPLL}(\varphi)$ algorithm

(1) If formula φ is trivial, return SAT/UNSAT
(2) Picks a variable v to branch on
(3) $v:=$ true
(4) Simplifies formula to φ^{\prime} and calls $\operatorname{DPLL}\left(\varphi^{\prime}\right)$
(5) if SAT, output SAT
(0) if UNSAT, $v:=\mathrm{false}$
(1) Simplifies formula to $\varphi^{\prime \prime}$ and calls $\operatorname{DPLL}\left(\varphi^{\prime \prime}\right)$
(8) if SAT, output SAT
(0) if UNSAT, output UNSAT

Cryptographic problems

$$
\begin{aligned}
& \text { Crypto problems are } \\
& \text { given in ANF } \\
& \begin{array}{l}
0=a b \oplus b \oplus b c \\
0=a \oplus d \oplus c \oplus b d \\
0=b c \oplus c d \oplus b d \\
0=d \oplus a b \oplus 1
\end{array}
\end{aligned}
$$

Methods to solve ANF

(1) Put into matrix, Gauss eliminate:

(2) Convert to CNF. Notice: it's same as above, but $a b=a \times b$ is included, and less info (rows) needed
(3) Other methods (e.g. F4/F5)

Gaussian elimination

Theory

- Solving a Gaussian elim. problem with DPLL-based SAT solvers is exponentially difficult
- Even though Gaussian elimination is poly-time
\rightarrow Theoretically, Gauss. elim in SAT solvers is useful

Practise

- Designers of SAT solvers have grown accustomed to solving worst-case exponential problems really fast
- But Gauss is different:

Matrix size: $n \times n$, MiniSat time (s)

20	22	24	26	28	30	32	34	36	38
0.02	0.09	0.22	0.8	1.84	8.2	30.9	90.0	331.3	1539.9

- Practical usefulness is still elusive

Gauss and Crypto

The two approaches

- Only-Gauss approach problem: too many rows needed, too large matrix
- Only-SAT approach problem: Can't "see" the matrix, can't find truths from it

A hybrid approach

Executing Gauss. elim. at every decision step in the SAT solver, we can mix the two approaches SAT Solver

Gauss
At every decision, exchange of information

Outline

(1) Context

- Cryptographic problems
- Gaussian elimination
(2) Gaussian elimination in SAT Solvers
- Datastructures, algorithms
- Row and Column Elimination by XOR
- Independent sub-matrixes
- Skipping parts of matrix to treat
(3) Results
(4) Conclusions

Datastructures, algorithms

Implementation

A-matrix

$$
\begin{aligned}
& v 10 \\
& v 8 \\
& v 9 \\
& \\
& {\left[\begin{array}{ccc|c}
1 & 1 & 1 & v 12 \\
0 & 0 & 1 & 1
\end{array}\right)} \\
& 0 \\
& 0
\end{aligned} 1
$$

Datastructures, algorithms

Implementation

A-matrix
N -matrix
with $v 8$ assigned to true

$$
\left.\begin{array}{cccc|c}
v 10 & v 8 & v 9 & v 12 & \text { aug } \\
\left.\left[\begin{array}{cccc|c}
1 & - & 1 & 1 & 1 \\
0 & - & 1 & 1 & 1 \\
0 & - & 0 & 1 & 0 \\
0 & - & 0 & 0 & 0
\end{array}\right] \quad \begin{array}{cccc|}
v 10 & v 8 & v 9 & v 12 \\
\text { aug } \\
1 & 1 & 1 & 1
\end{array}\right) 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Datastructures, algorithms

Implementation

A-matrix
N -matrix
with $v 8$ assigned to true

$$
\left.\begin{array}{cccc|c}
v 10 & v 8 & v 9 & v 12 & \text { aug } \\
\left.\left[\begin{array}{cccc|c}
1 & - & 1 & 1 & 1 \\
0 & - & 1 & 1 & 1 \\
0 & - & 0 & 1 & 0 \\
0 & - & 0 & 0 & 0
\end{array}\right] \quad \begin{array}{cccc|}
v 10 & v 8 & v 9 & v 12 \\
\text { aug } \\
1 & 1 & 1 & 1
\end{array}\right) 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Resulting xor-clause:

$$
v 8 \oplus v 12
$$

Datastructures, algorithms

Implementation

A-matrix
N -matrix
with $v 8$ assigned to true

$$
\left.\begin{array}{cccc|c}
v 10 & v 8 & v 9 & v 12 & \text { aug } \\
\left.\left[\begin{array}{cccc|c}
1 & - & 1 & 1 & 1 \\
0 & - & 1 & 1 & 1 \\
0 & - & 0 & 1 & 0 \\
0 & - & 0 & 0 & 0
\end{array}\right] \quad \begin{array}{cccc|}
v 10 & v 8 & v 9 & v 12 \\
\text { aug } \\
1 & 1 & 1 & 1
\end{array}\right) 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Resulting xor-clause:

$$
v 12=\mathrm{false} \quad \leftarrow \quad v 8 \oplus v 12
$$

Row and Column Elimination by XOR — RCX

Example

- If variable a is not present anywhere but in 2 XOR-s:

$$
\begin{aligned}
a \oplus b \oplus c \oplus d & =\mathrm{false} \\
a \oplus f \oplus g \oplus h & =\mathrm{false}
\end{aligned}
$$

- Then we can remove a, the two XOR-s, and add the XOR:

$$
f \oplus g \oplus h \oplus b \oplus c \oplus d=\mathrm{false}
$$

Theory

- This is variable elimination at the XOR-level
- It is equivalent to VE at CNF level
- But it doesn't make sense to do this at CNF level:
\rightarrow results in far more (and larger) clauses
- For us it helps: removes 1 column (a) and one row from the matrix

Independent sub-matrixes

Reasoning

- Gaussian elimination is approx. $O\left(n m^{2}\right)$ algorithm
- Making two smaller matrixes from one bigger one leads to speedup
- If matrix has non-connected components, cutting up is orthogonal to algorithm output

Independent sub-matrixes

Algorithm

Let us build a graph from the XOR-s:

- Vertexes are the variables
- Edge runs between two vertexes if they appear in an XOR
- Independent graph components are extracted

Advantages

- In case of 2 roughly equal independent sub-matrixes:
$c n m^{2} \rightarrow 2 c^{\prime}(n / 2)(m / 2)^{2}=c^{\prime} n m^{2} / 4$
- Better understanding of problem structure:
- E.g. number of shift registers in a cipher
- Number of S-boxes in cipher
- Problem similarities

Not treating parts of the matrix

Reasoning

- Let's assume the leftmost column updated is the $c^{t h}$
- Let's assume the topmost " 1 " in this column was in row r
- Then, the rows above r cannot have changed their leading 1

Example

Auto turn-off

- If Gauss. doesn't bring enough benefits, it is switched off
- Performance is measured by percentage of times confl/prop is generated
- Conflict is preferred - we can return immediately

More efficient data structure

Data structure

- Bits are packed - faster row xor/swap
- Augmented column is non-packed - faster checking
- Two matrixes are stored as an interlaced continuous array
- $A[0][0] \ldots A[0][n], N[0][0] \ldots N[0][n], \ldots A[m][0] \ldots N[m][n]$

Advantages

- When doing row-xor both matrixes' rows are xor-ed
- When doing row-swap both matrixes' rows are swapped
- We can now operate on one continuous data in both operations

Outline

(1) Context

- Cryptographic problems
- Gaussian elimination
(2) Gaussian elimination in SAT Solvers
- Datastructures, algorithms
- Row and Column Elimination by XOR
- Independent sub-matrixes
- Skipping parts of matrix to treat
(3) Results
(4) Conclusions

Results overview

Before: "Extending SAT Solvers to Cryptographic Problems"

- Worked only on few instances
- Had to be tuned for each instance
- Gave approx. 5-10\% speedup

Now: "Enhanced Gaussian Elimination in DPLL-based SAT Solvers"

- Matrix discovery is automatic
- Less tuning necessary - turn-off is automatic
- Works on more types of instances
- Gives up to $30 \%-45 \%$ speedup

Results - RCX

Table: Avg. time (in sec.) to solve 100 random problems

	Bivium				53	51
no. help bits	55	54	53	52	50	
no RCX + no Gauss	0.69	1.26	1.38	2.19	6.25	10.40
RCX + no Gauss	0.65	0.89	1.30	2.36	5.76	8.87
no RCX + Gauss	0.55	0.91	1.06	1.89	3.87	7.76
RCX + Gauss	0.52	0.69	0.90	1.85	3.81	6.20
Vars removed on avg	36.27	36.42	37.30	37.07	38.32	37.94

Results - Gauss

Table: Avg. time (in sec.) to solve 100 random problems

	Bivium				
no. help bits	54	53	52	51	50
RCX	0.89	1.30	2.36	5.76	8.87
Gauss+RCX	0.69	0.90	1.85	3.81	6.20
Trivium					
no. help bits	157	156	155	154	153
RCX	66.57	86.42	146.17	261.75	472.27
Gauss+RCX	40.57	68.16	84.13	146.35	259.07

Results - Gauss cont.

Table: Avg. time (in sec.) to solve 100 random problems

HiTag2							
no. help bits	15	14	13	12	11	10	9
RCX	4.78	11.73	30.70	76.44	233.61	719.86	1666.99
Gauss+RCX	4.76	11.64	29.03	77.19	220.64	701.46	1636.77
Grain							
no. help bits	109	108	107	106			
RCX	168.51	291.29	540.14	1123.08			
Gauss+RCX	193.09	359.58	608.47	1133.75			

Outline

(1) Context

- Cryptographic problems
- Gaussian elimination
(2) Gaussian elimination in SAT Solvers
- Datastructures, algorithms
- Row and Column Elimination by XOR
- Independent sub-matrixes
- Skipping parts of matrix to treat
(3) Results
(4) Conclusions

Conclusions

Conclusions

- Gaussian elimination can bring benefits for specific applications
- Better understanding of the problem could be gained

Possible future work

- Automatic cut-off value finding
- Better heuristics to decide when to execute Gaussian elim.
- Add support for sparse matrix representation

Thank you for your time

