
Parallel SAT Solving - Using More Cores

Norbert Manthey

Norbert.Manthey@tu-dresden.de

18.06.2011

Norbert Manthey Parallel SAT Solving - Using More Cores 18.06.2011 1 / 16

Outline

1 Introduction
2 Preliminaries
3 The Parallelization
4 Results
5 Open problems

Norbert Manthey Parallel SAT Solving - Using More Cores 18.06.2011 2 / 16

Motivation

SAT solving is widely applied, however

most solvers are sequential

architecture becomes parallel

a good scalable parallelization is still missing

How to parallelize the solving process?

Norbert Manthey Parallel SAT Solving - Using More Cores 18.06.2011 3 / 16

CDCL Solvers

Modern SAT solver are based on DPLL with many improvements.

Conflict analysis

Undo more decisions than only the last one (usually)

The variable order on the current path changes often

Restarts

Learned clause removal

Advanced algorithms

Conflict resolution is linear (15%)

Two-Watched-Literal unit propagation (80%)

Norbert Manthey Parallel SAT Solving - Using More Cores 18.06.2011 4 / 16

Current Approaches

Run the same solver multiple times

sharing learned clauses and more

Split the search

by splitting the search tree and solving subformulas

by splitting the formula and finding multiple models per subformula

Run additional tasks in separat threads (e.g. autarky detection)

Problems:

Higher memory bandwidth / more memory accesses

Splitting might not lead to easier subformulas

Why not parallelize the solver itself?

Norbert Manthey Parallel SAT Solving - Using More Cores 18.06.2011 5 / 16

Solver analysis

Runtime properties of an exemplary SAT solver

(all measurements are based on riss and the SAT09 industrial benchmark, 1h timeout)

Unit propagation needs 80 %

Propagating a literal reveals more implied literals

at least 2 more in 13 % of the cases

at least 4 more in 4 % of the cases

Suggestion:

Parallelize UP by splitting the formula,

share implied literals found in subformulas

Norbert Manthey Parallel SAT Solving - Using More Cores 18.06.2011 6 / 16

Necessary steps

1 Separate formula into n partitions

Use function Assign: clause → partition

Currently: alternating

2 Create n threads that execute UP in parallel

create assignment, trail, propagation queue per thread

choose a master thread

initialize structures with according clause partition

3 Use Assign to distribute learned clauses

4 Do backjumping for all threads

5 Remove learned clauses in all threads

Can result in unbalanced load

Norbert Manthey Parallel SAT Solving - Using More Cores 18.06.2011 7 / 16

Sequential propagation

0:traditionalPropagate(){

1: C = 0;

2: while(not myQueue.processed()){

3: l = myQueue.dequeue(); // keep on queue

4: C = propagate(l); // enqueues implied literals

5: if(C != 0) break;

6: }

7: return C;

8:}

Sequential propagation uses its private propagation queue, assignment and

trail.

Norbert Manthey Parallel SAT Solving - Using More Cores 18.06.2011 8 / 16

The parallelization per thread

Master thread executes CDCL algorithm and wakes slave threads for UP

0:propagate(){

1: while((not all finished) and (no conflict signaled)){

2: C = traditionalPropagate();

3: if(C != 0){ signalConflict(C); break; }

4: check all other threads for new literals;

5: }

6: if(conflict not from master){

7: updateMaster();

8: }

9:}

Reading other threads data is lock- and waitfree.

Norbert Manthey Parallel SAT Solving - Using More Cores 18.06.2011 9 / 16

Example

Given scenario: Formula with 5 clauses, 2 threads

F = 〈[¬1, 2], [¬1, 4], [¬2, 3], [¬2, 5], [¬4,¬5]〉
Splitted formula: T1: [¬1, 2], [¬2, 3], [¬4,¬5] T2: [¬1, 4], [¬2, 5]

Algorithm execution:

T1: Reason - C1 C3 C2 C5 C4

Queue 1 2 3 S 4 ¬5 S 5

Step 0 1 2 3 4 5 6 7 8 9

T2: Queue 1 4 S 2 3 ¬5 5

Reason - C2 C1 C3 C5 C4

T2 signals conflict in step 7

T1 performs update in step 8 and 9

Propagation results in conflict

Norbert Manthey Parallel SAT Solving - Using More Cores 18.06.2011 10 / 16

Results SAT Race 2010

Conditions: 100 instances, 15 minutes timeout

Configuration Seq1 D1 D2 D3

Solved instances 48 61 64 68

Average runtime 191.721 219.941 193.019 215.212

Speedup on the 41 commonly solved instances

Average Maximal D1 Median

1.091 1.578 1.28 1.3

Norbert Manthey Parallel SAT Solving - Using More Cores 18.06.2011 11 / 16

Runtime distribution on a single instance

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160 180

d
is

tr
ib

u
ti
o
n

runtime

runtime distribution for aloul-chnl11-13.cnf.runs

runtime distribution

Norbert Manthey Parallel SAT Solving - Using More Cores 18.06.2011 12 / 16

Runtime distribution on a single instance

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

d
is

tr
ib

u
ti
o
n

runtime

runtime distribution for velev-engi-uns-1.0-4nd.cnf.runs

runtime distribution

Norbert Manthey Parallel SAT Solving - Using More Cores 18.06.2011 13 / 16

Open problems

Problems:

waiting times (4 % idle, 1.5 % system)

no load balancing

scales not beyond 2 threads

Possible Solutions:

find a well working Assign function

introduce load balancing to reduce idle times

use spin locks instead of the sleep-state

combine presented approach with existing methods

Norbert Manthey Parallel SAT Solving - Using More Cores 18.06.2011 14 / 16

Conclusion

Parallel UP is possible

Not many additional memory accesses are needed

Speedup is not yet optimal

Further analysis has to be done

Presented approach can be combined with existing solutions

Used numer of cores can be doubled

Norbert Manthey Parallel SAT Solving - Using More Cores 18.06.2011 15 / 16

Thanks

The solver is available at https://gitorious.org/riss

Norbert Manthey Parallel SAT Solving - Using More Cores 18.06.2011 16 / 16

https://gitorious.org/riss

	Introduction
	Preliminaries
	The Parallelization
	Results
	Open problems

