Parallel SAT Solving - Using More Cores

Norbert Manthey

Norbert.Manthey@tu-dresden.de

18.06.2011

Norbert Manthey Parallel SAT Solving - Using More Cores 18.06.2011 1/16



Outline

Introduction
Preliminaries

The Parallelization
Results

Open problems

Norbert Manthey Parallel SAT Solving - Using More Cores 18.06.2011



Motivation

SAT solving is widely applied, however
@ most solvers are sequential
@ architecture becomes parallel

@ a good scalable parallelization is still missing

How to parallelize the solving process?

Parallel SAT Solving - Using More Cores

Norbert Manthey



CDCL Solvers

Modern SAT solver are based on DPLL with many improvements.
o Conflict analysis

o Undo more decisions than only the last one (usually)
e The variable order on the current path changes often

@ Restarts
@ Learned clause removal

@ Advanced algorithms

o Conflict resolution is linear (15%)
o Two-Watched-Literal unit propagation (80%)

Norbert Manthey Parallel SAT Solving - Using More Cores 18.06.2011



Current Approaches

@ Run the same solver multiple times
e sharing learned clauses and more
@ Split the search

e by splitting the search tree and solving subformulas
e by splitting the formula and finding multiple models per subformula

@ Run additional tasks in separat threads (e.g. autarky detection)

Problems:
@ Higher memory bandwidth / more memory accesses

@ Splitting might not lead to easier subformulas

Why not parallelize the solver itself?

Norbert Manthey Parallel SAT Solving - Using More Cores 18.06.2011 5/ 16



Solver analysis

Runtime properties of an exemplary SAT solver

(all measurements are based on riss and the SAT09 industrial benchmark, 1h timeout)

@ Unit propagation needs 80 %
o Propagating a literal reveals more implied literals

o at least 2 more in 13 % of the cases
o at least 4 more in 4% of the cases

Suggestion:

Parallelize UP by splitting the formula,
share implied literals found in subformulas

Norbert Manthey Parallel SAT Solving - Using More Cores 18.06.2011 6 /16



Necessary steps

@ Separate formula into n partitions

e Use function Assign: clause — partition
o Currently: alternating

@ Create n threads that execute UP in parallel

e create assignment, trail, propagation queue per thread
@ choose a master thread
e initialize structures with according clause partition

© Use Assign to distribute learned clauses
@ Do backjumping for all threads

@ Remove learned clauses in all threads

e Can result in unbalanced load

Norbert Manthey Parallel SAT Solving - Using More Cores 18.06.2011



Sequential propagation

0:traditionalPropagate (){

1: C = 0;

2: while( not myQueue.processed() ){

3: 1 = myQueue.dequeue(); // keep on queue

4. C = propagate( 1 ); // enqueues implied literals
5: if( C '= 0 ) break;

6: }

7: return C;

8:}

Sequential propagation uses its private propagation queue, assignment and
trail.

Norbert Manthey Parallel SAT Solving - Using More Cores 18.06.2011 8 /16



The parallelization per thread

Master thread executes CDCL algorithm and wakes slave threads for UP

0:propagate(){
: while( (not all finished) and (no conflict signaled)){
C = traditionalPropagate();
if( C !'= 0 ){ signalConflict( C ); break; }
check all other threads for new literals;

1

2

3

4

5: %}
6: if( conflict not from master ){
7: updateMaster();

8: }

9:}

Reading other threads data is lock- and waitfree.

Norbert Manthey Parallel SAT Solving - Using More Cores 18.06.2011 9 /16



Given scenario: Formula with 5 clauses, 2 threads

F= <[ﬁ17 2]7 [ﬁlv 4]7 [ﬁ27 3]7 [ﬁzv 5]7 [ﬁ47 j5]>
Splitted formula:  Ti: [—\17 2]7 [—|27 3]7 [—|47 —|5] To: [—|1, 4], [—\2, 5]

Algorithm execution:

Ti: | Reason -1 G G G| G Cy
Queue 1| 2 3|1S| 4|5 S| 5
Step 0|1 21 3 4 |5| 6 7 18] 9
T2: | Queue 1| 4 S| 2 3 5|5
Reason - C2 C1 C3 C5 C4

T, signals conflict in step 7
Ty performs update in step 8 and 9
Propagation results in conflict

Norbert Manthey Parallel SAT Solving - Using More Cores 18.06.2011 10 / 16



Results SAT Race 2010

Conditions: 100 instances, 15 minutes timeout

Configuration Seql D1 D2 D3
Solved instances 48 61 64 68
Average runtime | 191.721 | 219.941 | 193.019 | 215.212

Speedup on the 41 commonly solved instances

Average | Maximal | D1 | Median
1.091 1.578 1.28 1.3

Norbert Manthey Parallel SAT Solving - Using More Cores 18.06.2011 11 /16



Runtime distribution on a single instance

runtime distribution for aloul-chnl11-13.cnf.runs

30

ru‘ntime distribution = ‘ ‘ ‘

25 -

distribution
o
T

B e

0 20 40 60 80 100 120
runtime

Parallel SAT Solving - Using More Cores

rbert Manthey

140

160

180

18.06.2011

12



Runtime distribution on a single instance

runtime distribution for velev-engi-uns-1.0-4nd.cnf.runs

30 —— . ; : :
runtime distribution —+— l/

4

distribution
o
T
\
Il

Il
0 5 10 15 20 25 30
runtime

Norbert Manthey Parallel SAT Solving - Using More Cores 18.06.2011 13 / 16



Open problems

Problems:
e waiting times (4 % idle, 1.5 % system)
@ no load balancing
@ scales not beyond 2 threads
Possible Solutions:
o find a well working Assign function
@ introduce load balancing to reduce idle times
@ use spin locks instead of the sleep-state

@ combine presented approach with existing methods

Norbert Manthey Parallel SAT Solving - Using More Cores 18.06.2011



Conclusion

Parallel UP is possible

Not many additional memory accesses are needed

Speedup is not yet optimal

@ Further analysis has to be done

Presented approach can be combined with existing solutions

Used numer of cores can be doubled

Norbert Manthey Parallel SAT Solving - Using More Cores 18.06.2011



Thanks

The solver is available at https://gitorious.org/riss

Norbert Manthey Parallel SAT Solving - Using More Cores 18.06.2011 16 / 16


https://gitorious.org/riss

	Introduction
	Preliminaries
	The Parallelization
	Results
	Open problems

