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I MOTIVATION

STATE-OF-THE-ART SOLVING

CDCL
partial assignment
decisions based on variable activity
conflict analysis
restarts

DMRP
complete assignment (ref. point)

decisions based on unsat clauses

slower than CDCL but less decisions
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I MOTIVATION

KINDS OF PARALLELISATION
Division of search space (guiding path)
Portfolio solving

CLAUSE SHARING
Most solvers: copy learnt clauses of other threads

MAIN AIM
Real / physical sharing of data
Threads work together
⇒ Any thread may benefit from strengthened clause

No use of OS locks
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II PARALLEL SOLVING

BASIC CONCEPT TO SHARE DATA

Shared data / objects contain user-mask
user-mask initialised by creating thread
Any thread can release object (clear bit)
Last thread destructs object

Compare and Swap operation

void release(SharedObj obj, tId){
do{

SharedObj{ old = obj.umask;
umask; new = clear bit ’tId’ in old;
... }while(!exchange(obj.umask,old,new));
} if(new == 0) destruct(obj);

}
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II.A PHYSICAL CLAUSE SHARING

II PARALLEL SOLVING

PHYSICAL SHARING OF CLAUSES
Have one instance of a clause
Indirection to access clause (thread private data)
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II.A PHYSICAL CLAUSE SHARING

II PARALLEL SOLVING

SHARED CLAUSE’ ARCHITECTURE
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II.A PHYSICAL CLAUSE SHARING

II PARALLEL SOLVING

REFERENCING CLAUSES IN CDCL
Unit propagation
Conflict analysis
Garbage collection

OBSERVATION
Whenever a clause is referenced at least one
watched literal is known

LEMMA
Two watched literals li , lj can be stored by one value:
Cw = li xor lj .
(li xor Cw → lj )
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II.A PHYSICAL CLAUSE SHARING

II PARALLEL SOLVING

SHARED CLAUSE’ ARCHITECTURE II
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II.A PHYSICAL CLAUSE SHARING

II PARALLEL SOLVING

DIGRESS TO SEQUENTIAL SOLVERS
Order of literals may be modified
Store clause C with |C|−1 integers
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II.A PHYSICAL CLAUSE SHARING

II PARALLEL SOLVING

OVERHEAD OF CLAUSE ORGANISATION
Comparison of different implementations with single thread
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II.B COMMUNICATION OF THREADS

II PARALLEL SOLVING

COMMUNICATION OF THREADS

Message queues used to send . . .
a new clause (may be new version)
notification on variable elimination
variable replacement
heuristic information

! Messages not only for heuristics
! Keep order of messages
! No OS locks
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II.B COMMUNICATION OF THREADS

II PARALLEL SOLVING

LOCKLESS QUEUES
one reading / one writing thread
writeHead points to next write position
readHead points to next read position
queue empty if writeHead = readHead
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II.B COMMUNICATION OF THREADS

II PARALLEL SOLVING

DYNAMIC SIZE
Write operation may fail
Write operation may overwrite unseen data

IDEA
Queue links to available update

Queue has
several reading
threads!
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III PORTFOLIO SOLVING

DIFFERENT STRATEGIES

6 of 8 threads apply CDCL (different settings)
Activity of Variables / Literals
Glucose / Static / Geometric / Luby restart schemes

Dedicated simplification thread
satElite like simplification
Asymmetric branching / vivification
SCC computation and removal of redundant binaries

Connect work - DMRP
At each restart: init reference point to set each
variable to predominant value among all threads
Learn ’interesting’ clauses
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III PORTFOLIO SOLVING

TAKE ADVANTAGE OF SHARING

Simplification of clause DB is shared
immediately
On-the-fly clause subsumption done by any
thread
⇒ Any thread may benefit
Lazy hyper binary resolution
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III PORTFOLIO SOLVING

DMRP & LITERALS ACTIVITY
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IV SUMMARY

SUMMARY

Physical clause sharing
XOR idea to store watched literals
parallel and sequential solvers

Communication without OS locks

CHALLENGES
! Has to run in parallel

Difficult to measure speedup
Computation time

? Logging without influencing course of events
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IV SUMMARY

CLAUSE COPYING STILL FASTER

Thank you for your attention!
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