
SARTAGNAN
A PARALLEL PORTFOLIO SAT SOLVER

WITH LOCKLESS PHYSICAL CLAUSE SHARING

Stephan Kottler and Michael Kaufmann

University of Tuebingen

1 — KOTTLER, KAUFMANN (SARTAGNAN)



OUTLINE

1 MOTIVATION

2 PARALLEL SOLVING
Physical clause sharing
Communication of threads

3 PORTFOLIO SOLVING

4 SUMMARY

2 — KOTTLER, KAUFMANN (SARTAGNAN)



I MOTIVATION

STATE-OF-THE-ART SOLVING

CDCL
partial assignment
decisions based on variable activity
conflict analysis
restarts

DMRP
complete assignment (ref. point)

decisions based on unsat clauses

slower than CDCL but less decisions

3 — KOTTLER, KAUFMANN (SARTAGNAN)



I MOTIVATION

STATE-OF-THE-ART SOLVING

CDCL
partial assignment
decisions based on variable activity
conflict analysis
restarts

DMRP
complete assignment (ref. point)

decisions based on unsat clauses

slower than CDCL but less decisions

3 — KOTTLER, KAUFMANN (SARTAGNAN)



I MOTIVATION

KINDS OF PARALLELISATION
Division of search space (guiding path)
Portfolio solving

CLAUSE SHARING
Most solvers: copy learnt clauses of other threads

MAIN AIM
Real / physical sharing of data
Threads work together
⇒ Any thread may benefit from strengthened clause

No use of OS locks

4 — KOTTLER, KAUFMANN (SARTAGNAN)



I MOTIVATION

KINDS OF PARALLELISATION
Division of search space (guiding path)
Portfolio solving

CLAUSE SHARING
Most solvers: copy learnt clauses of other threads

MAIN AIM
Real / physical sharing of data
Threads work together
⇒ Any thread may benefit from strengthened clause

No use of OS locks
4 — KOTTLER, KAUFMANN (SARTAGNAN)



II PARALLEL SOLVING

BASIC CONCEPT TO SHARE DATA

Shared data / objects contain user-mask
user-mask initialised by creating thread
Any thread can release object (clear bit)
Last thread destructs object

Compare and Swap operation

void release(SharedObj obj, tId){
do{

SharedObj{ old = obj.umask;
umask; new = clear bit ’tId’ in old;
... }while(!exchange(obj.umask,old,new));
} if(new == 0) destruct(obj);

}

5 — KOTTLER, KAUFMANN (SARTAGNAN)



II PARALLEL SOLVING

BASIC CONCEPT TO SHARE DATA

Shared data / objects contain user-mask
user-mask initialised by creating thread
Any thread can release object (clear bit)
Last thread destructs object

Compare and Swap operation
void release(SharedObj obj, tId){
do{

SharedObj{ old = obj.umask;
umask; new = clear bit ’tId’ in old;
... }while(!exchange(obj.umask,old,new));
} if(new == 0) destruct(obj);

}

5 — KOTTLER, KAUFMANN (SARTAGNAN)



II.A PHYSICAL CLAUSE SHARING

II PARALLEL SOLVING

PHYSICAL SHARING OF CLAUSES
Have one instance of a clause
Indirection to access clause (thread private data)

6 — KOTTLER, KAUFMANN (SARTAGNAN)



II.A PHYSICAL CLAUSE SHARING

II PARALLEL SOLVING

SHARED CLAUSE’ ARCHITECTURE

7 — KOTTLER, KAUFMANN (SARTAGNAN)



II.A PHYSICAL CLAUSE SHARING

II PARALLEL SOLVING

REFERENCING CLAUSES IN CDCL
Unit propagation
Conflict analysis
Garbage collection

OBSERVATION
Whenever a clause is referenced at least one
watched literal is known

LEMMA
Two watched literals li , lj can be stored by one value:
Cw = li xor lj .
(li xor Cw → lj )

8 — KOTTLER, KAUFMANN (SARTAGNAN)



II.A PHYSICAL CLAUSE SHARING

II PARALLEL SOLVING

REFERENCING CLAUSES IN CDCL
Unit propagation
Conflict analysis
Garbage collection

OBSERVATION
Whenever a clause is referenced at least one
watched literal is known

LEMMA
Two watched literals li , lj can be stored by one value:
Cw = li xor lj .
(li xor Cw → lj )

8 — KOTTLER, KAUFMANN (SARTAGNAN)



II.A PHYSICAL CLAUSE SHARING

II PARALLEL SOLVING

REFERENCING CLAUSES IN CDCL
Unit propagation
Conflict analysis
Garbage collection

OBSERVATION
Whenever a clause is referenced at least one
watched literal is known

LEMMA
Two watched literals li , lj can be stored by one value:
Cw = li xor lj .
(li xor Cw → lj )

8 — KOTTLER, KAUFMANN (SARTAGNAN)



II.A PHYSICAL CLAUSE SHARING

II PARALLEL SOLVING

SHARED CLAUSE’ ARCHITECTURE II

9 — KOTTLER, KAUFMANN (SARTAGNAN)



II.A PHYSICAL CLAUSE SHARING

II PARALLEL SOLVING

DIGRESS TO SEQUENTIAL SOLVERS
Order of literals may be modified
Store clause C with |C|−1 integers

10 — KOTTLER, KAUFMANN (SARTAGNAN)



II.A PHYSICAL CLAUSE SHARING

II PARALLEL SOLVING

OVERHEAD OF CLAUSE ORGANISATION
Comparison of different implementations with single thread

11 — KOTTLER, KAUFMANN (SARTAGNAN)



II.B COMMUNICATION OF THREADS

II PARALLEL SOLVING

COMMUNICATION OF THREADS

Message queues used to send . . .
a new clause (may be new version)
notification on variable elimination
variable replacement
heuristic information

! Messages not only for heuristics
! Keep order of messages
! No OS locks

12 — KOTTLER, KAUFMANN (SARTAGNAN)



II.B COMMUNICATION OF THREADS

II PARALLEL SOLVING

COMMUNICATION OF THREADS

Message queues used to send . . .
a new clause (may be new version)
notification on variable elimination
variable replacement
heuristic information

! Messages not only for heuristics
! Keep order of messages
! No OS locks

12 — KOTTLER, KAUFMANN (SARTAGNAN)



II.B COMMUNICATION OF THREADS

II PARALLEL SOLVING

LOCKLESS QUEUES
one reading / one writing thread
writeHead points to next write position
readHead points to next read position
queue empty if writeHead = readHead

13 — KOTTLER, KAUFMANN (SARTAGNAN)



II.B COMMUNICATION OF THREADS

II PARALLEL SOLVING

LOCKLESS QUEUES
one reading / one writing thread
writeHead points to next write position
readHead points to next read position
queue empty if writeHead = readHead

13 — KOTTLER, KAUFMANN (SARTAGNAN)



II.B COMMUNICATION OF THREADS

II PARALLEL SOLVING

LOCKLESS QUEUES
one reading / one writing thread
writeHead points to next write position
readHead points to next read position
queue empty if writeHead = readHead

13 — KOTTLER, KAUFMANN (SARTAGNAN)



II.B COMMUNICATION OF THREADS

II PARALLEL SOLVING

LOCKLESS QUEUES
one reading / one writing thread
writeHead points to next write position
readHead points to next read position
queue empty if writeHead = readHead

13 — KOTTLER, KAUFMANN (SARTAGNAN)



II.B COMMUNICATION OF THREADS

II PARALLEL SOLVING

LOCKLESS QUEUES
one reading / one writing thread
writeHead points to next write position
readHead points to next read position
queue empty if writeHead = readHead

13 — KOTTLER, KAUFMANN (SARTAGNAN)



II.B COMMUNICATION OF THREADS

II PARALLEL SOLVING

DYNAMIC SIZE
Write operation may fail
Write operation may overwrite unseen data

IDEA
Queue links to available update

Queue has
several reading
threads!

14 — KOTTLER, KAUFMANN (SARTAGNAN)



II.B COMMUNICATION OF THREADS

II PARALLEL SOLVING

DYNAMIC SIZE
Write operation may fail
Write operation may overwrite unseen data

IDEA
Queue links to available update

Queue has
several reading
threads!

14 — KOTTLER, KAUFMANN (SARTAGNAN)



II.B COMMUNICATION OF THREADS

II PARALLEL SOLVING

DYNAMIC SIZE
Write operation may fail
Write operation may overwrite unseen data

IDEA
Queue links to available update

Queue has
several reading
threads!

14 — KOTTLER, KAUFMANN (SARTAGNAN)



II.B COMMUNICATION OF THREADS

II PARALLEL SOLVING

DYNAMIC SIZE
Write operation may fail
Write operation may overwrite unseen data

IDEA
Queue links to available update

Queue has
several reading
threads!

14 — KOTTLER, KAUFMANN (SARTAGNAN)



III PORTFOLIO SOLVING

DIFFERENT STRATEGIES

6 of 8 threads apply CDCL (different settings)
Activity of Variables / Literals
Glucose / Static / Geometric / Luby restart schemes

Dedicated simplification thread
satElite like simplification
Asymmetric branching / vivification
SCC computation and removal of redundant binaries

Connect work - DMRP
At each restart: init reference point to set each
variable to predominant value among all threads
Learn ’interesting’ clauses

15 — KOTTLER, KAUFMANN (SARTAGNAN)



III PORTFOLIO SOLVING

TAKE ADVANTAGE OF SHARING

Simplification of clause DB is shared
immediately
On-the-fly clause subsumption done by any
thread
⇒ Any thread may benefit
Lazy hyper binary resolution

16 — KOTTLER, KAUFMANN (SARTAGNAN)



III PORTFOLIO SOLVING

DMRP & LITERALS ACTIVITY

17 — KOTTLER, KAUFMANN (SARTAGNAN)



IV SUMMARY

SUMMARY

Physical clause sharing
XOR idea to store watched literals
parallel and sequential solvers

Communication without OS locks

CHALLENGES
! Has to run in parallel

Difficult to measure speedup
Computation time

? Logging without influencing course of events

18 — KOTTLER, KAUFMANN (SARTAGNAN)



IV SUMMARY

CLAUSE COPYING STILL FASTER

Thank you for your attention!

19 — KOTTLER, KAUFMANN (SARTAGNAN)


	Motivation
	Parallel Solving
	Physical clause sharing
	Communication of threads

	Portfolio Solving
	Summary

