EBERHARD KARLS
UNIVERSITAT
TUBINGEN

SARTAGNAN
A PARALLEL PORTFOLIO SAT SOLVER

WITH LOCKLESS PHYSICAL CLAUSE SHARING

Stephan Kottler and Michael Kaufmann

University of Tuebingen

1 — KOTTLER, KAUFMANN (SARTAGNAN)



EBERHARD KARLS
UNIVERSITAT
TUBINGEN

OUTLINE

@ MOTIVATION

© PARALLEL SOLVING
@ Physical clause sharing
@ Communication of threads

© PORTFOLIO SOLVING

@ SUMMARY

2 — KOTTLER, KAUFMANN (SARTAGNAN)



EBERHARD KARLS
UNIVERSITAT
TUBINGEN

STATE-OF-THE-ART SOLVING

CDCL
@ partial assignment
@ decisions based on variable activity
@ conflict analysis
@ restarts

I MOTIVATION

3 — KOTTLER, KAUFMANN (SARTAGNAN)



EBERHARD KARLS

UNIVERSITAT
TUBINGEN I MOTIVATION

STATE-OF-THE-ART SOLVING

CDCL
@ partial assignment
@ decisions based on variable activity
@ conflict analysis
@ restarts

DMRP

@ complete assignment (ref. point)

@ decisions based on unsat clauses

@ slower than CDCL but less decisions

3 — KOTTLER, KAUFMANN (SARTAGNAN)



EBERHARD KARLS
UNIVERSITAT
TUBINGEN I MOTIVATION

KINDS OF PARALLELISATION

@ Division of search space (guiding path)
@ Portfolio solving

CLAUSE SHARING
Most solvers: copy learnt clauses of other threads

4 — KOTTLER, KAUFMANN (SARTAGNAN)



EBERHARD KARLS
UNIVERSITAT
TUBINGEN I MOTIVATION

KINDS OF PARALLELISATION

@ Division of search space (guiding path)
@ Portfolio solving

CLAUSE SHARING
Most solvers: copy learnt clauses of other threads

MAIN AIM
@ Real / physical sharing of data

@ Threads work together
= Any thread may benefit from strengthened clause

@ No use of OS locks

4 — KOTTLER, KAUFMANN (SARTAGNAN)



UK{\‘]LS]/\EK}% §\I‘I—FA—1— P
TUBINGEN II PARALLEL SOLVING

BASIC CONCEPT TO SHARE DATA

@ Shared data / objects contain user-mask

e user-mask initialised by creating thread
e Any thread can release object (clear bit)
e Last thread destructs object

@ Compare and Swap operation

5 — KOTTLER, KAUFMANN (SARTAGNAN)



UK{\‘]LS]/\EK}% §\I‘I—FA—1— P
TUBINGEN II PARALLEL SOLVING

BASIC CONCEPT TO SHARE DATA

@ Shared data / objects contain user-mask

e user-mask initialised by creating thread
e Any thread can release object (clear bit)
e Last thread destructs object

@ Compare and Swap operation

void release (SharedObj obj, tId){

do{
SharedObj{ old = obj.umask;
umask; new clear bit ’'tId’ in old;

}while (!exchange (obj.umask, o0ld, new) ) ;
} if (new == 0) destruct (obj);

}

5 — KOTTLER, KAUFMANN (SARTAGNAN)



EBERHARD KARLS
UNIVERSITAT
TUBINGEN

II PARALLEL SOLVING

PHYSICAL SHARING OF CLAUSES
Have one instance of a clause

Indirection to access clause (thread private data)

6 — KOTTLER, KAUFMANN (SARTAGNAN)



EBERHARD KARLS
UNIVERSITAT
TUBINGEN

II PARALLEL SOLVING

SHARED CLAUSE’ ARCHITECTURE

7 — KOTTLER, KAUFMANN (SARTAGNAN)



UI\L’l}L%lE[{lsg\lj%jAT I1.A PHYSICAL CLAUSE SHARING
TUBINGEN II PARALLEL SOLVING

REFERENCING CLAUSES IN CDCL

@ Unit propagation
@ Conflict analysis
@ Garbage collection

8 — KOTTLER, KAUFMANN (SARTAGNAN)



U[ﬁ?&ﬁﬁﬁ?}\‘[ I1.A PHYSICAL CLAUSE SHARING
TUBINGEN II PARALLEL SOLVING

REFERENCING CLAUSES IN CDCL

@ Unit propagation
@ Conflict analysis
@ Garbage collection

OBSERVATION

Whenever a clause is referenced at least one
watched literal is known

8 — KOTTLER, KAUFMANN (SARTAGNAN)



U[\LlliLil/lﬁ[{fig\l‘z'FAT I1.A PHYSICAL CLAUSE SHARING
TUBINGEN II PARALLEL SOLVING

REFERENCING CLAUSES IN CDCL

@ Unit propagation
@ Conflict analysis
@ Garbage collection

OBSERVATION

Whenever a clause is referenced at least one
watched literal is known

LEMMA

Two watched literals I;, |; can be stored by one value:
Cw = l; xor |;.

(I xor Cw — 1;)

8 — KOTTLER, KAUFMANN (SARTAGNAN)



EBERHARD KARLS
UNIVERSITAT
TUBINGEN

II PARALLEL SOLVING

SHARED CLAUSE’ ARCHITECTURE II

9 — KOTTLER, KAUFMANN (SARTAGNAN)

A



EBERHARD KARLS
UNIVERSITAT
TUBINGEN

II PARALLEL SOLVING

DIGRESS TO SEQUENTIAL SOLVERS
@ Order of literals may be modified

@ Store clause C with |C| — 1 integers

> Clause 3
10 — KOTTLER, KAUFMANN (SARTAGNAN)

Clause m



EBERHARD KARLS

UNIVERSITAT I1.A PHYSICAL CLAUSE SHARING
TUBINGEN II PARALLEL SOLVING

OVERHEAD OF CLAUSE ORGANISATION

Comparison of different implementations with single thread

Effects of clause organisation

Time [s3]

a
H
H
M,

188

58 ‘

; -

] 25 5@ 75 168 125 158 175 280 225 2598 275 308 325 350 375 488 425 450 4735 564
Mumker of Instances

€1 Hatchers at front ——
2 Clause indirection with external Hatchers-XOR ——
€3) Clause indirection with external Watchers-XOR and cache of index —%—

(4 Internal Matchers-HOR —a—
11 — KOTTLER, KAUFMANN (SARTAGNAN)



U[{ff\}ﬂiéi"i‘/\‘[‘ ¢ I1.8 COMMUNICATION OF THREADS
TUBINGEN II PARALLEL SOLVING

COMMUNICATION OF THREADS

Message queues used to send . ..
@ a new clause (may be new version)
@ notification on variable elimination
@ variable replacement
@ heuristic information

12 — KOTTLER, KAUFMANN (SARTAGNAN)



EBERHARD KARLS

UNIVERSITAT ¢ 11.B COMMUNICATION OF THREADS
TUBINGEN II PARALLEL SOLVING

COMMUNICATION OF THREADS

Message queues used to send . ..
@ a new clause (may be new version)
@ notification on variable elimination
@ variable replacement
@ heuristic information

I Messages not only for heuristics
I Keep order of messages
I No OS locks

12 — KOTTLER, KAUFMANN (SARTAGNAN)



EBERHARD KARLS -
UNIVERSITAT ¢ I1.B COMMUNICATION OF THREADS

TUBINGEN II PARALLEL SOLVING

LLOCKLESS QUEUES

@ one reading / one writing thread

@ writeHead points to next write position
@ readHead points to next read position
@ queue empty if writeHead = readHead

V3

13 — KOTTLER, KAUFMANN (SARTAGNAN)



EBERHARD KARLS -
UNIVERSITAT ¢ I1.B COMMUNICATION OF THREADS

TUBINGEN II PARALLEL SOLVING

LLOCKLESS QUEUES

@ one reading / one writing thread

@ writeHead points to next write position
@ readHead points to next read position
@ queue empty if writeHead = readHead

13 — KOTTLER, KAUFMANN (SARTAGNAN)



EBERHARD KARLS -
UNIVERSITAT ¢ I1.B COMMUNICATION OF THREADS

TUBINGEN II PARALLEL SOLVING

LLOCKLESS QUEUES

@ one reading / one writing thread

@ writeHead points to next write position
@ readHead points to next read position
@ queue empty if writeHead = readHead

13 — KOTTLER, KAUFMANN (SARTAGNAN)



EBERHARD KARLS -
UNIVERSITAT ¢ I1.B COMMUNICATION OF THREADS

TUBINGEN II PARALLEL SOLVING

LLOCKLESS QUEUES

@ one reading / one writing thread

@ writeHead points to next write position
@ readHead points to next read position
@ queue empty if writeHead = readHead

2 |

13 — KOTTLER, KAUFMANN (SARTAGNAN)



EBERHARD KARLS -
UNIVERSITAT ¢ I1.B COMMUNICATION OF THREADS

TUBINGEN II PARALLEL SOLVING

LLOCKLESS QUEUES

@ one reading / one writing thread

@ writeHead points to next write position
@ readHead points to next read position
@ queue empty if writeHead = readHead

A

13 — KOTTLER, KAUFMANN (SARTAGNAN)



EBERHARD KARLS

UNIVERSITAT I1.B COMMUNICATION OF THREADS
TUBINGEN II PARALLEL SOLVING

DYNAMIC SIZE

@ Write operation may falil
@ Write operation may overwrite unseen data

IDEA
Queue links to available update

14 — KOTTLER, KAUFMANN (SARTAGNAN)



EBERHARD KARLS

UNIVERSITAT ¢ 11.B COMMUNICATION OF THREADS
TUBINGEN II PARALLEL SOLVING

DYNAMIC SIZE

@ Write operation may falil
@ Write operation may overwrite unseen data

IDEA
Queue links to available update

A
N R

14 — KOTTLER, KAUFMANN (SARTAGNAN)



EBERHARD KARLS y
UNIVERSITAT
TUBINGEN

DYNAMIC SIZE

@ Write operation may falil
@ Write operation may overwrite unseen data

IDEA

Queue links to available update

I1.B COMMUNICATION OF THREADS
IT PARALLEL SOLVING

H

udt |

/w

| Null

14 — KOTTLER, KAUFMANN (SARTAGNAN)



U[\lll]l\}‘f[[\g‘é\]"i'AT & I1.8 COMMUNICATION OF THREADS
TUBINGEN II PARALLEL SOLVING

DYNAMIC SIZE

@ Write operation may falil
@ Write operation may overwrite unseen data

IDEA
Queue links to available update

omasf] war [T T [ | Queuehas
several reading
threads!
umask| Null | | | | | | |

14 — KOTTLER, KAUFMANN (SARTAGNAN)



EBERHARD KARLS &
UNIVERSITAT &¢
TUBINGEN III PORTFOLIO SOLVING

DIFFERENT STRATEGIES

@ 6 of 8 threads apply CDCL (different settings)

e Activity of Variables / Literals

e Glucose / Static / Geometric / Luby restart schemes
@ Dedicated simplification thread

e satElite like simplification
e Asymmetric branching / vivification
e SCC computation and removal of redundant binaries

@ Connect work - DMRP

e At each restart: init reference point to set each
variable to predominant value among all threads
e Learn’interesting’ clauses

15 — KOTTLER, KAUFMANN (SARTAGNAN)



UNL]\*[LL\(]/\E\}%SK‘\IH_FAT P
TUBINGEN III PORTFOLIO SOLVING

TAKE ADVANTAGE OF SHARING

@ Simplification of clause DB is shared
immediately

@ On-the-fly clause subsumption done by any
thread
=- Any thread may benefit

@ Lazy hyper binary resolution

16 — KOTTLER, KAUFMANN (SARTAGNAN)



EBERHARD KARLS

UNIVERSITAT
TUBINGEN

DMRP & LITERALS ACTIVITY

Configuration of solving threads

III PORTFOLIO SOLVING

1288 o
115@

1188
185a
1a8a
95a
EL:L]
g5a
g0
75a
78a
&5@
3:2) '
554 I
S8a
45@
488
3s5a
z0a
25a
zea

1a -l

168 MM

Se

Time [s3]

L] 25 50 75 lg@
Humber of Instances

CDCL with wvariakle activity —— CDCL fwar,lit activityd and DMRP ——

17 — KOTTLER, KAUFMANN (SARTAGNAN)



UK{\}L@\E{}% §\I‘I—FA—1— P
TUBINGEN IV SUMMARY

SUMMARY

@ Physical clause sharing
@ XOR idea to store watched literals
parallel and sequential solvers

@ Communication without OS locks

CHALLENGES

I Has to run in parallel

o Difficult to measure speedup
e Computation time

? Logging without influencing course of events

18 — KOTTLER, KAUFMANN (SARTAGNAN)



EBERHARD KARLS
UNIVERSITAT
TUBINGEN

CLAUSE COPYING STILL FASTER

ManySAT, SArTagnan
11

Thank you for your attention!

19 — KOTTLER, KAUFMANN (SARTAGNAN)



	Motivation
	Parallel Solving
	Physical clause sharing
	Communication of threads

	Portfolio Solving
	Summary

