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STATE-OF-THE-ART SOLVING

CDCL
@ partial assignment
@ decisions based on variable activity
@ conflict analysis
@ restarts

I MOTIVATION
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STATE-OF-THE-ART SOLVING

CDCL
@ partial assignment
@ decisions based on variable activity
@ conflict analysis
@ restarts

DMRP

@ complete assignment (ref. point)

@ decisions based on unsat clauses

@ slower than CDCL but less decisions
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KINDS OF PARALLELISATION

@ Division of search space (guiding path)
@ Portfolio solving

CLAUSE SHARING
Most solvers: copy learnt clauses of other threads
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KINDS OF PARALLELISATION

@ Division of search space (guiding path)
@ Portfolio solving

CLAUSE SHARING
Most solvers: copy learnt clauses of other threads

MAIN AIM
@ Real / physical sharing of data

@ Threads work together
= Any thread may benefit from strengthened clause

@ No use of OS locks
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BASIC CONCEPT TO SHARE DATA

@ Shared data / objects contain user-mask

e user-mask initialised by creating thread
e Any thread can release object (clear bit)
e Last thread destructs object

@ Compare and Swap operation
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BASIC CONCEPT TO SHARE DATA

@ Shared data / objects contain user-mask

e user-mask initialised by creating thread
e Any thread can release object (clear bit)
e Last thread destructs object

@ Compare and Swap operation

void release (SharedObj obj, tId){

do{
SharedObj{ old = obj.umask;
umask; new clear bit ’'tId’ in old;

}while (!exchange (obj.umask, o0ld, new) ) ;
} if (new == 0) destruct (obj);

}
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II PARALLEL SOLVING

PHYSICAL SHARING OF CLAUSES
Have one instance of a clause

Indirection to access clause (thread private data)
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SHARED CLAUSE’ ARCHITECTURE
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REFERENCING CLAUSES IN CDCL

@ Unit propagation
@ Conflict analysis
@ Garbage collection
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REFERENCING CLAUSES IN CDCL

@ Unit propagation
@ Conflict analysis
@ Garbage collection

OBSERVATION

Whenever a clause is referenced at least one
watched literal is known
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REFERENCING CLAUSES IN CDCL

@ Unit propagation
@ Conflict analysis
@ Garbage collection

OBSERVATION

Whenever a clause is referenced at least one
watched literal is known

LEMMA

Two watched literals I;, |; can be stored by one value:
Cw = l; xor |;.

(I xor Cw — 1;)
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II PARALLEL SOLVING

SHARED CLAUSE’ ARCHITECTURE II
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II PARALLEL SOLVING

DIGRESS TO SEQUENTIAL SOLVERS
@ Order of literals may be modified

@ Store clause C with |C| — 1 integers

> Clause 3
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OVERHEAD OF CLAUSE ORGANISATION

Comparison of different implementations with single thread

Effects of clause organisation

Time [s3]
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2 Clause indirection with external Hatchers-XOR ——
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(4 Internal Matchers-HOR —a—
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COMMUNICATION OF THREADS

Message queues used to send . ..
@ a new clause (may be new version)
@ notification on variable elimination
@ variable replacement
@ heuristic information
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COMMUNICATION OF THREADS

Message queues used to send . ..
@ a new clause (may be new version)
@ notification on variable elimination
@ variable replacement
@ heuristic information

I Messages not only for heuristics
I Keep order of messages
I No OS locks
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LLOCKLESS QUEUES

@ one reading / one writing thread

@ writeHead points to next write position
@ readHead points to next read position
@ queue empty if writeHead = readHead

V3
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LLOCKLESS QUEUES

@ one reading / one writing thread

@ writeHead points to next write position
@ readHead points to next read position
@ queue empty if writeHead = readHead

A
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DYNAMIC SIZE

@ Write operation may falil
@ Write operation may overwrite unseen data

IDEA
Queue links to available update
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DYNAMIC SIZE

@ Write operation may falil
@ Write operation may overwrite unseen data

IDEA

Queue links to available update

I1.B COMMUNICATION OF THREADS
IT PARALLEL SOLVING

H

udt |

/w

| Null

14 — KOTTLER, KAUFMANN (SARTAGNAN)



U[\lll]l\}‘f[[\g‘é\]"i'AT & I1.8 COMMUNICATION OF THREADS
TUBINGEN II PARALLEL SOLVING

DYNAMIC SIZE

@ Write operation may falil
@ Write operation may overwrite unseen data

IDEA
Queue links to available update

omasf] war [T T [ | Queuehas
several reading
threads!
umask| Null | | | | | | |
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DIFFERENT STRATEGIES

@ 6 of 8 threads apply CDCL (different settings)

e Activity of Variables / Literals

e Glucose / Static / Geometric / Luby restart schemes
@ Dedicated simplification thread

e satElite like simplification
e Asymmetric branching / vivification
e SCC computation and removal of redundant binaries

@ Connect work - DMRP

e At each restart: init reference point to set each
variable to predominant value among all threads
e Learn’interesting’ clauses
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TAKE ADVANTAGE OF SHARING

@ Simplification of clause DB is shared
immediately

@ On-the-fly clause subsumption done by any
thread
=- Any thread may benefit

@ Lazy hyper binary resolution
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DMRP & LITERALS ACTIVITY

Configuration of solving threads

III PORTFOLIO SOLVING
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SUMMARY

@ Physical clause sharing
@ XOR idea to store watched literals
parallel and sequential solvers

@ Communication without OS locks

CHALLENGES

I Has to run in parallel

o Difficult to measure speedup
e Computation time

? Logging without influencing course of events
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CLAUSE COPYING STILL FASTER

ManySAT, SArTagnan
11

Thank you for your attention!
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