Contributions to the Theory of Practical QBF Solving

Allen Van Gelder Computer Science Dept. Univ. of California Santa Cruz, CA, USA

http://www.cse.ucsc.edu/~avg/

http://www.cse.ucsc.edu/~avg/Papers/ These slides are qpup-trans.pdf

http://www.cse.ucsc.edu/~avg/ProofChecker/
Software directory, contains QdpllexpSimple.tar.

Overview of Topics in QBF Solving

Exponential Case for Usual Clause Learning Procedure Shaky Proposal for QBF Pseudo-Unit Propagation (QPUP) Observations on Pure Literals

- Treat Existential Pure Literals as Assumptions
- Treat Universal Pure Literals as Universal Reductions

Depth-Monotonic Literals

Exponential Case for Usual Clause Learning Procedure

Assume outermost existential 41 is true, implying 11 and 12 at innermost scope.

Now 55 is tailing, allowing 9 and 10 to be implied.

• In each four-literal clause the two negative existential literals "block" the universal literal.

• After they are falsified by unit-clause propagation, the universal literal can be reduced, yielding a new implied existential literal.

This pattern continues until $[\overline{2}, \overline{1}]$ is falsified.

Exponential Case for Usual Clause Learning Procedure, Part 2

Learning Scheme

- Try to resolve out most recently assigned (i.e., trail latest) existential.
- If tautology, resolve out innermost quantifier scope (max qdepth).

Walk through shows 11 and 12 get resolved out 2^k times.

Exponential Case for Usual Clause Learning Procedure, Part 3

Running times in seconds on *qdpllexp* family

family index	18	19	20	21	22	23
QuBE 1.3	10	22	47	105	segv	segv
depQBF 0.1	8	16	32	69	140	298
CirQit3.15	1	1	3	5	11	21

Running times in seconds on a tougher version of *qdpllexp* family

family index	18	19	20	21	22	23
QuBE 1.3	>5hr	>5hr	>5hr	>5hr	memout	memout
depQBF 0.1	175	365	777	1606	3364	6934
CirQit3.15	9	17	33	67	135	267

An Alternative: QBF Pseudo-Unit Propagation

$$qpup(12) = \begin{bmatrix} 12, \overline{41} \\ qpup(11) = \begin{bmatrix} 11, \overline{41} \\ 11, \overline{41} \end{bmatrix}$$
$$qpup(10) = \begin{bmatrix} 10, \overline{41} \\ 10, \overline{41} \end{bmatrix}$$
$$qpup(9) = \begin{bmatrix} 9, \overline{41} \end{bmatrix}$$
$$\dots$$
$$qpup(\bot) = \begin{bmatrix} \overline{41} \end{bmatrix}$$

Last is the learned clause.

In general, the learned clause has negations of some of the assumptions.

Making QPUP Practical: a Fuzzy idea

- Find a *safe* UIP literal.
- Treat assignments at lower decision levels as assumptions.
- Make latest assumption the safe UIP literal.
- Do QPUP from there through the falsified clause.

Safe means: Since the UIP will be in all derived clauses it should not block any universal reductions.

The *most recent* existential assumed literal is a safe UIP.

Complications:

- Unit clauses with large qdepth (very inner scopes)
- Decision levels with Universal assumed literals.
- Existential pure literals
- Universal pure literals
- Universal "implied" literals from unit cubes
- Oh No! Dependency Schemes.

Existential Pure Literals

These are *not* logically implied from the assumptions.

So, treat as a new assumption.

However, *never* let it be the UIP literal for learning

• Pretend it was assigned at a lower decision level; choose something else.

Theorem

If *e* is existential pure based on original clauses and ...

If \overline{e} is in a learned clause, say C, then ...

then $C - \overline{e}$ is also logically implied by the original formula (as restricted at the time that e became pure).

An existential pure literal cannot have a quadrangle dependency on any universal literal, so it can move scopes without changing the truth value of the formula.

Universal Pure Literals

These are *not* logically implied from the assumptions.

So, treat as a universal reductions (i.e., clause by clause).

Justification:

No existential literal can have a quadrangle dependency on any universal pure literal, so the universal pure literal can "sink" to innermost scope without changing the truth value of the formula. **Depth-Monotonic Literals**

See the proceedings.

Conclusion

Theory is a lot easier than implementation.

Useful theory should make implementation easier.