

EagleUP: Solving Random 3-SAT using SLS with Unit Propagation

Oliver Gableske¹

¹oliver.gableske@uni-ulm.de Institute of Theoretical Computer Science Ulm University Germany

This is a joint work with Marijn Heule.

Pragmatics of SAT, 18.06.2011

Outline

• Motivation and Goal of our Work

2 Preliminaries

- SLS, Sparrow and Eagle
- Unit Propagation, iUP, VAR and VAL

3 Enhancing SLS with iUP

- General idea for combining SLS and iUP
- The problem of combining SLS and iUP
- Cool-down periods and the Cauchy probability distribution
- 4 EagleUP
- 5 Results of the Empirical Study
- 6 Conclusions and Future Work

Motivation and Goal of our Work

Motivation

Introduction

- Design of a fast SAT Solver for random k-SAT
- SLS approach has proven its worth
- Combining UP and SLS has been successful on structures instances

Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

• SLS+UP: Does it also work for random ones?

Motivation and Goal of our Work

Enhancing SLS with iUP

- Motivation
 - Design of a fast SAT Solver for random k-SAT
 - SLS approach has proven its worth
 - Combining UP and SLS has been successful on structures instances

EagleUP Results of the Empirical Study Conclusions and Future Work

- SLS+UP: Does it also work for random ones?
- Goal

Introduction

• Improve the performance of a given SLS solver on random instances using UP

- Task: For a given 3-SAT formula F
 - with n variables, $\mathcal{V} = \{x_1, \ldots, x_n\}$
 - and m clauses, $\mathcal{C} = \{c_1, \ldots, c_m\}$
- Find an assignment $\alpha: \mathcal{V} \to \{0,1\}$, such that $F(\alpha) = 1$

- Task: For a given 3-SAT formula F
 - with n variables, $\mathcal{V} = \{x_1, \ldots, x_n\}$
 - and m clauses, $\mathcal{C} = \{c_1, \ldots, c_m\}$
- Find an assignment $\alpha: \mathcal{V} \to \{0,1\}$, such that $F(\alpha) = 1$
- To perform search, SLS solvers use
 - $\bullet\,$ a total assignment α
 - an objective function f (number of unsatisfied clauses in F under α)


```
SLS(3-CNF F, timeout t)
```

Randomly initialize α ;

repeat

if $F(\alpha) = 1$ then output satisfying assignment; terminate;

if
$$\exists \alpha' \in \mathsf{Neighborhood}(\alpha): f(\alpha') \leq f(\alpha)$$

then //greedy mode

 $\alpha:=\alpha';\,//{\rm flip}$ the variable that gives the best improvement else $//{\rm random}$ mode

flip random variable according to some heuristic;

until timeout *t* is reached;

output unknown;

- Random mode requires a heuristic to decides what variable to flip
- Sparrow heuristic [ABAF2010] has shown strong performance on 3-SAT

- Random mode requires a heuristic to decides what variable to flip
- Sparrow heuristic [ABAF2010] has shown strong performance on 3-SAT
- In random mode, at least one unsatisfied clause is available
- Sparrow works as follows:
 - Pick one unsatisfied clause at random, $u_i = (x_{i_1} \vee \ldots \vee x_{i_k})$
 - $\bullet\,$ For all the variables in $u_i,$ compute a probability $p(x_{ij})$ to flip this variable
 - Randomly pick a variable from \boldsymbol{u}_i according to the probability distribution and flip it

- The SLS solver we want to improve is called Eagle
 - Eagle is a from scratch re-implementation of the Sparrow solver [ABAF2010]
 - Eagle is a G2WSAT solver using the Sparrow heuristic in random mode [OGMH2010]

- The SLS solver we want to improve is called Eagle
 - Eagle is a from scratch re-implementation of the Sparrow solver [ABAF2010]
 - Eagle is a G2WSAT solver using the Sparrow heuristic in random mode [OGMH2010]
- The reason why we used it:
 - \bullet Eagle shows strong performance on random $3\text{-}\mathsf{SAT}$
 - Improving algorithms that are good by themselves is usually hard
 - Improving a strong SAT solver is a non-trivial task
 - Succeeding in this task is considered to be a useful result

Introduction O	Preliminaries	Enhancing SLS with iUP 000000000000	EagleUP O	Results of the Empirical Study O	Conclusions and Future Work
iIIP					

- Unit Propagation (UP) is well known from the literature and of fundamental importance to systematic search solvers
- The iterated application of unit propagation until saturation is called iUP

iUP

- Unit Propagation (UP) is well known from the literature and of fundamental importance to systematic search solvers
- The iterated application of unit propagation until saturation is called iUP
- Problem: a plain 3-CNF formula does not contain unit clauses, so what do we propagate?
- Solution: if no unit clause is present, pick some variable and propagate a value for it
- Eventually, we get
 - unit clauses
 - the empty clause

iUP

- Unit Propagation (UP) is well known from the literature and of fundamental importance to systematic search solvers
- The iterated application of unit propagation until saturation is called iUP
- Problem: a plain 3-CNF formula does not contain unit clauses, so what do we propagate?
- Solution: if no unit clause is present, pick some variable and propagate a value for it
- Eventually, we get
 - unit clauses
 - the empty clause
- iUP in general needs three things
 - A variable selection heuristic (VAR)
 - A value selection heuristic (VAL)
 - The information whether to stop once the empty clause is found (conflictStopFlag)

iUP(3-CNF F, var. sel. heur. VAR, val. sel. heur. VAL, conflictStopFlag) Initialize $\beta{:=}\{\};$

repeat

if $F(\beta)$ contains a unit clause

then assign the corresponding variable in β such that it satisfies the clause; else use VAR to select a variable unassigned in β ; use VAL to assign it in β ; until β assigns all variables or (conflictStopFlag and empty clause found)

return β ;


```
\label{eq:linear} \begin{array}{l} \texttt{iUP(3-CNF}\ F, \mbox{ var. sel. heur. VAR, \mbox{ val. sel. heur. VAL, \ conflictStopFlag)} \\ \\ \texttt{Initialize}\ \beta{:=}\{\}; \end{array}
```

repeat

if $F(\beta)$ contains a unit clause

then assign the corresponding variable in β such that it satisfies the clause; else use VAR to select a variable unassigned in β ; use VAL to assign it in β ; until β assigns all variables or (conflictStopFlag and empty clause found) return β ;

- In the following:
 - $\bullet\,$ assignment of the SLS solver is called α
 - (partial) assignment of iUP is called β

Enhancing a given SLS solver with iUP requires answers to the following questions:

- **When** to perform iUP during the SLS solvers search?
- **2** How is the result β of iUP used?
- What variable selection heuristic VAR should iUP use?
- What value selection heuristic VAL should iUP use?
- What happens if iUP detects the empty clause?

- When to perform iUP during the SLS solvers search?
 - iUP is supposed to assist the SLS solver in its search
 - A comparatively obvious situation in which the SLS solver could use assistance is when it cannot make any greedy flips
 - The most simple answer to the "When" question would be to call for iUP instead of switching into random mode
- Idea: Replace the random mode heuristic with a call to iUP.

General idea for combining SLS and iUP

- O How is the result β of iUP used?
 - The goal of the SLS solver in random mode would be to escape the current "dead end" assignment α
 - This is usually done by using a variable selection heuristic like the Sparrow heuristic
 - \bullet The resulting assignment β from the call to iUP must now be used to fulfill this task

Idea: Compare α and β on all variables assigned in β . "Multi-flip" all variables in α that have a different assignment in β , i.e. all variables that iUP does not agree on.

Introduction Preliminaries Enhancing SLS with 1UP EagleUP Results of the Empirical Study Conclusions and Future Work

What variable selection heuristic VAR should iUP use?

- Research on (double)-look-ahead solvers suggests the use of a recursive weighting heuristic
- An example would be the RW heuristic [SMBWMH2010,DAMF2010]
- RW provides you with an ordering $\theta_{\rm RW}$ of the variables
- Intuitively, $\theta_{\mathsf{RW}}(x_i) < \theta_{\mathsf{RW}}(x_j)$ means variable x_i has a stronger impact on the formula than x_j when it is assigned
- A stronger variable impact results in more reduction in the formula
- More reduction yields more unit clauses sooner

ldea: VAR picks the first variable according to $\theta_{\rm RW}$ that is not yet assigned in $\beta.$

Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

General idea for combining SLS and iUP

- What value selection heuristic VAL should iUP use?
 - Once iUP decided for a variable to assign next, it must decide what value it wants to assign it to
 - \bullet The use of β is to help the SLS escape from a dead end α
 - $\bullet~\beta$ must somehow be related to the dead end assignment α
 - \bullet A straight forward idea is to have iUP try to reconstruct the SLS solvers assignment α

Idea: VAL performs $\beta(x_i) = \alpha(x_i)$.

Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

General idea for combining SLS and iUP

- What value selection heuristic VAL should iUP use?
 - Once iUP decided for a variable to assign next, it must decide what value it wants to assign it to
 - $\bullet\,$ The use of β is to help the SLS escape from a dead end α
 - $\bullet~\beta$ must somehow be related to the dead end assignment α
 - \bullet A straight forward idea is to have iUP try to reconstruct the SLS solvers assignment α
- Idea: VAL performs $\beta(x_i) = \alpha(x_i)$.
 - The only way that α and β do not agree on a variable is because of unit propagation.

General idea for combining SLS and iUP

- What happens if iUP detects the empty clause?
 - As soon as the empty clause emerges, all further propagations/assignments are meaningless

ldea: iUP stops as soon as the empty clause emerges (conflictStopFlag := true).

```
Introduction Preliminaries Enhancing SLS with iUP EagleUP of Conclusions and Future Work of the Empirical Study Conclusions and Future Work of the Empirical Study of the Empirical Stu
```

Putting it all together

SLSUP(k-CNF F, timeout t)

Randomly initialize α ;

Compute θ_{RW} ;

repeat

```
if (F(\alpha) = 1) then output satisfying assignment; terminate;

if \exists \alpha' \in \text{Neighborhood}(\alpha): f(\alpha') \leq f(\alpha)

then //greedy mode

\alpha := \alpha'; //flip the variable that gives the best improvement

else //random mode

\alpha := iUP(F, \theta_{RW}, \alpha, true); //partially override \alpha with \beta

until timeout t is reached;

output unknown;
```


Does this work?

 Introduction
 Preliminaries
 Enhancing SLS with 1UP eagleUP occord
 Results of the Empirical Study occords and Future Work occord

 Putting it all together
 Itogether
 Itogether
 Itogether
 Itogether

Does this work?

• No!

Why?

Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

Putting it all together

Does this work?

• No!

Why?

- SLS encounters a dead end in about every third flip (3-SAT, determined empirically)
- $\bullet\,$ The amount of variables iUP propagates is about 42% before it discovers the empty clause
- $\bullet\,$ We use a static variable ordering and two almost identical α
- The chance to get two different results from consecutive iUP calls is practically non-existent
- Calling iUP that often is a waste of computational time

Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

Putting it all together

Does this work?

• No!

Why?

- SLS encounters a dead end in about every third flip (3-SAT, determined empirically)
- $\bullet\,$ The amount of variables iUP propagates is about 42% before it discovers the empty clause
- $\bullet\,$ We use a static variable ordering and two almost identical α
- The chance to get two different results from consecutive iUP calls is practically non-existent
- Calling iUP that often is a waste of computational time
- Solution: Call iUP less often.

- Straight forward approach for calling iUP less often:
 - manually increase the amount of flips that have to pass between to consecutive calls of iUP
 - \bullet these intervals of flips in between two iUP calls are called cool-down periods $\mathfrak c$

- Straight forward approach for calling iUP less often:
 - manually increase the amount of flips that have to pass between to consecutive calls of iUP
 - \bullet these intervals of flips in between two iUP calls are called cool-down periods $\mathfrak c$
- How long should these cool-down periods be?

- Straight forward approach for calling iUP less often:
 - manually increase the amount of flips that have to pass between to consecutive calls of iUP
 - \bullet these intervals of flips in between two iUP calls are called cool-down periods $\mathfrak c$
- How long should these cool-down periods be?
 - Fixed values will not work
 - Pick cool-down periods randomly from a given interval

- Straight forward approach for calling iUP less often:
 - manually increase the amount of flips that have to pass between to consecutive calls of iUP
 - \bullet these intervals of flips in between two iUP calls are called cool-down periods $\mathfrak c$
- How long should these cool-down periods be?
 - Fixed values will not work
 - Pick cool-down periods randomly from a given interval
 - \bullet What does the interval look like? $[\mathfrak{c}_{\min},\mathfrak{c}_{\max}]$
 - What distribution is used for picking values from that interval?

Empirical tests indicate, that the cool-down periods should be picked from the interval [0, 2.7n]. But what about the distribution?

Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

Empirical tests indicate, that the cool-down periods should be picked from the interval [0, 2.7n]. But what about the distribution? The Cauchy distribution is defined by its probability density function (PDF):

$$c: \mathbb{R} \mapsto \mathbb{R}, \ c(z) = \frac{1}{\pi} \cdot \frac{\gamma}{\gamma^2 + (z-\omega)^2}$$

Its cumulative distribution function (CDF) is

$$C : \mathbb{R} \mapsto \mathbb{R}, \ C(z) = P(Z < z) = \frac{1}{2} + \frac{1}{\pi} \cdot \arctan\left(\frac{z - \omega}{\gamma}\right).$$

with $\omega := 2n$ and $\gamma = 1500$.

Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

Cauchy distribution

Empirical tests indicate, that the cool-down periods should be picked from the interval [0, 2.7n]. But what about the distribution? The Cauchy distribution is defined by its probability density function (PDF):

$$c: \mathbb{R} \mapsto \mathbb{R}, \ c(z) = \frac{1}{\pi} \cdot \frac{\gamma}{\gamma^2 + (z-\omega)^2}$$

Its cumulative distribution function (CDF) is

$$C : \mathbb{R} \mapsto \mathbb{R}, \ C(z) = P(Z < z) = \frac{1}{2} + \frac{1}{\pi} \cdot \arctan\left(\frac{z - \omega}{\gamma}\right).$$

with $\omega := 2n$ and $\gamma = 1500$.

The general idea is: after every call to iUP

• pick $a \in [0,1)$ uniformly at random

• compute
$$\mathfrak{c} = \lfloor \min\{z | C(z) \ge a\} \rfloor$$

Cauchy distribution

Given a formula F with 26000 variables.

Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work 0 000000 0000000000 0 0 00

Cauchy distribution

Given a formula F with 26000 variables.

Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

Again, putting it all together

Preliminaries

Introduction

```
EagleUP(k-CNF F, timeout t)
     Randomly initialize \alpha;
     Compute \theta_{RW};
     Compute Cauchy CDF C(z), z \in [0, 2.7n], \omega := 2n, \gamma := 1500, \mathfrak{c} = \omega;
     flips:=0; lastIUPcall:=0;
     repeat
         if (F(\alpha) = 1) output satisfying assignment; terminate;
          if \exists \alpha' \in \mathsf{Neighborhood}(\alpha): f(\alpha') < f(\alpha)
          then //greedy mode
                 \alpha := \alpha'; flips++;
          else //random mode
                if flips > lastIUPcall + \mathfrak{c}
                then //do iUP
                      \alpha := iUP(F, \theta_{RW}, \alpha, true); //partially override \alpha with \beta
                      lastIUPcall=flips:
                      randomly pick a \in [0, 1) and set \mathfrak{c} := \min\{z | C(Z) \ge a\};
                else //do Sparrow
                      use Sparrow heuristic to flip a variable; flips++;
     until timeout t is reached:
     output unknown;
```

Introduction Preliminaries Enhancing SLS with 1UP EagleUP Results of the Empirical Study Conclusions and Future Work

Results of the Empirical Study

This part of the empirical study consists of 600 3-SAT formulas

- of sizes 20000 variables to 30000 variables (100 each, 50 runs each)
- with a ratio of 4.2

• Check http://edacc2.informatik.uni-ulm.de/EDACC3/index

Conclusions and Future Work

Enhancing SLS with iUP

Conclusions:

• We provided a scheme to combine SLS and UP to gain speed-ups on random 3-SAT formulas

EagleUP Results of the Empirical Study Conclusions and Future Work

• The usage of cool-down periods is of vital importance

Future Work:

- Why does the Cauchy distribution work? Is there any other Distribution that gives better results?
- Why is the possibility to have short/long cool-down periods so important?

Thank you for your attention!

Questions?

Empirical study

Part A: 600 random 3-CNF formulas, 20000 30000 var., ratio 4.2												
Part B: 1300 random 3-CNF formulas, 26000 var., ratios 4.14 4.24												
Part A	succ.	avg. run	avg. std.	speed	succ.	avg. run	avg. std.	speed	succ.	avg. run	avg. std.	speed
Solver	rate [%]	time [s]	dev. [s]	up [%]	rate [%]	time [s]	dev. [s]	up [%]	rate [%]	time [s]	dev. [s]	up [%]
	v20,000, r4.2			v22,000, r4.2			v24,000, r4.2					
TNM	77.90	708.09	389.61	767	68.34	899.15	434.65	76 7	58.00	899.64	401.62	68.9
Eagle	99.70	164.71	138.51	21.2	99.70	209.47	173.56	18 7	98.42	279.40	213.44	22.4
EagleUP	99.72	129.76	97.81	21.2	99.96	170.13	129.28	10.7	99.28	216.64	155.78	22.7
	v26,000, r4.2			v28,000, r4.2			v30,000, r4.2					
TNM	49.90	1017.9	5 374.88	8 70 7	47.86	1062.19	383.74	60.0	30.32	1192.53	314.95	(2)
Eagle	97.64	297.3	7 229.84	4 16.0	97.70	318.93	234.06	15 4	95.82	443.45	310.29	02.8
EagleUP	98.18	247.0	7 185.92	2 10.9	98.76	269.73	190.01	13.4	97.94	371.05	261.43	10.3
Part B	avg. run	speed	avg. run	speed	avg. run	speed	avg. run	speed	avg. ru	n speed	avg. run	speed
Solver	time [s]	up [%]	time [s]	up [%]	time [s]	up [%]	time [s]	up [%]	time [s	up [%]	time [s]	up [%]
	r4.14 r4.16		r4.18		r4.20		r4.22		r4.24*			
Eagle	9.36	65	29.85	11.1	94.97	16.6	297.37	16.9	763.49	67	1107.28	57
EagleUP	8.75	0.5	26.53	11.1	79.24	10.0	247.07	10.9	712.04	t ^{0.7}	1043.27	5.7

Results for Part A and B suggest superiority of EagleUP over Eagle.

Bibliography

- ABAF2010 Balint, A., Fröhlich, A.: Improving Stochastic Local Search for SAT with a New Probability Distribution. In SAT'10, LNCS 6175:10-16. Springer 2010.
- OGMH2011 Gableske, O., Heule, M.J.H.: Solving Random 3-SAT using SLS with Unit Propagation. PoS Workshop at SAT'11, 2011.
- SMBWHM2010 Mijnders, S., De Wilde, B., Heule, M.J.H.: Symbiosis of search and heuristics for random 3-SAT. In LaSh'10, 2010.
- DAMF2010 Athanasiou, D., Fernandez, M.A.: Recursive Weight Heuristic for Random k-SAT. Technical report from Delft University. http://www.st.ewi.tudelft.nl/sat/reports/ RecursiveWeightHeurKSAT.pdf, 2010.