Pure Literal Rules and QU-resolution in QBF Search-Based Solvers

Allen Van Gelder Computer Science Dept. Univ. of California Santa Cruz, CA, USA

http://www.cse.ucsc.edu/~avg/

http://www.cse.ucsc.edu/~avg/Pos12/ These slides are pos12-trans.pdf

http://www.cse.ucsc.edu/~avg/ProofChecker/
Software directory, contains QdpllexpSimple.tar.

What are Quantified Boolean Formulas (QBFs)?

Most general definition:

- Add quantification $(\forall u, \exists e)$ as a new propositional operation.
- A quantified variable must be *true* or *false*.

Least general definition:

- \mathcal{F} is a quantifier-free propositional formula in *conjunctive normal form*.
- \overrightarrow{Q} is a sequence of quantified variables, outer to inner scopes.
- $\Phi = \overrightarrow{Q} \cdot \mathcal{F}$ is a *prefix CNF* (PCNF) formula.
- This paper considers *closed* PCNF (all variables quantified).
- Example (chart form):

Literal Naming Convention

- Lowercase letters near the beginning of the alphabet are *existential* literals (or variables, if specified in the context), e.g., *c*, *d*, *e*, etc.
- Lowercase letters near the end of the alphabet are *universal* literals (or variables, if specified in the context), e.g., *t*, *u*, *v*, etc.
- *p*, *q*, *r*, *s* are of unspecified quantifier type.
- |p| denotes the *variable* underlying the *literal* p.
 (Mainly for quantifier sequences.)

QBF as a Two-Player Game

- Two players: A is Universal, E is Existential.
- $\Phi = \overrightarrow{Q} \cdot \mathcal{F} \text{ is a PCNF (prefix: } \overrightarrow{Q}, \text{ matrix: } \mathcal{F}).$
- When outermost (unassigned) variable is *universal*, A chooses a value for it and Φ gets simplified.
- When outermost (unassigned) variable is *existential*, E chooses a value for it and Φ gets simplified.
- If Φ simplifies to *false*, *A* wins. If Φ simplifies to *true*, *E* wins.

"Definition": *Truth-Value Semantics* of Φ (coarse grain):

- The value of Φ is *false* (or 0) if and only if *A* has a winning strategy.
- The value of Φ is *true* (or 1) if and only if *E* has a winning strategy.

Example: Two-Player Game

Say *A* chooses u = 0; qblock qblock qblock qblock $\leftarrow 1 \rightarrow \leftarrow 2 \rightarrow$ 3 4 C_2 is "satisfied" and $\forall v \exists e \exists f$ $\forall u$ $\forall t$ $\exists d$ Φ is deleted from \mathcal{F} . \overline{d} C_1 *u* is deleted from C_1 . fU t \overline{d} \overline{t} C_2 \overline{u} $\overline{\mathcal{V}}$ \overline{e} Then say *A* chooses v = 0; C_3 df v е t *v* is deleted from C_3 . • • • $\exists d$ Φ_1 $\exists e$ $\exists f$ $\forall t$ Next, Player *E* chooses values \overline{d} C_1 ffor e and f. t f C_3 е t And so on. . . .

Notes:

- Quantifier order matters between qblocks, but not within a qblock.
- *One* empty clause makes Φ false (the goal of *A*).
- *Every* clause must be satisfied to make Φ true (the goal of *E*), but *one* true literal suffices to satisfy a clause.

Tree Models for QBF

For a QBF $\Phi = \overrightarrow{Q} \cdot \mathcal{F}$, a *tree model* of Φ is a nonempty set of *ordered assignments* with certain restrictions that ensure that the set defines a tree.

An *ordered assignment* is a total assignment with the literals

in quantifier-prefix order, outer to inner.

Each ordered assignment is a tree branch and satisfies all clauses.

Φ	$\forall u$	$\forall v$	$\exists e$	$\exists f$	$\forall t$	$\exists d$
C_1	и			f	t	\overline{d}
C_2	\overline{u}	$\overline{\mathcal{V}}$	\overline{e}		\overline{t}	$\frac{\overline{d}}{\overline{d}}$
C_3		v	е	f	t	d
	•••					
	$\overline{\mathcal{U}}$	$\overline{\mathcal{V}}$	е	f	\overline{t}	\overline{d}
	U	$\overline{\mathcal{V}}$	е	f	t	d
	$\overline{\mathcal{U}}$	V	е	f	\overline{t}	\overline{d}
	$\overline{\mathcal{U}}$	V	е	f	t	$\frac{d}{d}$
	и	$\overline{\mathcal{V}}$	е	f	\overline{t}	\overline{d}
	и	$\overline{\mathcal{V}}$	е	f	t	$\frac{d}{d}$
	и	v	\overline{e}	f	\overline{t}	
	и	v	\overline{e}	f	t	d

The 8 ordered assignments shown are a tree model for the part of Φ shown. There are many others.

Q-Resolution

Two operations:

- *propositional resolution* on an *existential* clashing literal (tautologous resolvents prohibited);
 - Let $C_1 = [e, \alpha]$ and $C_2 = [\overline{e}, \beta]$.
 - $\operatorname{res}_{e}(C_1, C_2) = \alpha \cup \beta$.
- universal reduction on a tailing universal literal.
 - If *u* is inner scope to all existentials in clause *C*, it may be deleted (locally assigned *false* in *C* only).
 - Let $C = [\underline{u}, \gamma]$.
 - **unrd**_u(C) = γ .

Theorem [Kleine Büning, Karpinski, Flögel 1995]:

A PCNF Φ is *false* if and only if the empty clause is derivable by Q-resolution.

Remark (speaker's opinion):

Universal reduction is a major factor in recent success of practical QBF solvers.

QU-Resolution

A *QU-derivation* is the same as a Q-resolution derivation except that it includes resolutions in which the clashing literal is universal.

- Resolutions are still required to be non-tautologous.
- A QU-refutation is a QU-derivation of the empty clause.
- *Regular* QU-derivation: no variable appears twice as a clashing literal or reduction literal on any directed path through the derivation DAG.
- *Ordered* QU-derivation: variables appear in the same order on every directed path through the derivation DAG.
- *Prefix-ordered* QU-derivation: an ordered QU-derivation such that variables appear in outer to inner order of the quantifier prefix on paths directed away from the root of the derivation DAG.

Properties of QU-Resolution (CP 2012, to appear)

Lemma:

If clause *D* is derived from $\Psi = \overrightarrow{Q} \cdot \mathcal{F}$ by QU-Resolution, then *D* is logically implied by Ψ (i.e., tree models are preserved).

Theorem:

If (non-tautological) clause *D* is logically implied by $\Psi = \overrightarrow{Q} \cdot \mathcal{F}$, then $D^{(-)}$ can be derived from Ψ by prefix-ordered QU-Resolution. If *D* is the empty clause then the QU-resolution can also be a Q-resolution.

QU-Resolution May Be Exponentially Shorter than Q-Resolution

The following QBF family is given by Kleine Büning and Lettman (1999) in the proof of their Theorem 7.4.8. The *k*-th QBF is:

$$\exists d_0 d_1 e_1 \forall x_1 \exists d_2 e_2 \forall x_2 \quad \cdots \quad \exists d_k e_k \forall x_k \exists f_1 \cdots \exists f_k \\ \begin{bmatrix} \overline{d_0} \\ 0, \overline{d_1}, \overline{e_1} \end{bmatrix} \\ \begin{bmatrix} d_j, \overline{x_j}, \overline{d_{j+1}}, \overline{d_{j+1}} \\ e_j, x_j, \overline{d_{j+1}}, \overline{d_{j+1}} \end{bmatrix} & \text{for } 1 \leq j < k \\ \begin{bmatrix} e_j, x_j, \overline{d_{j+1}}, \overline{d_{j+1}} \\ 1 \end{bmatrix} & \text{for } 1 \leq j < k \\ \begin{bmatrix} d_k, \overline{x_k}, \overline{f_1}, \dots, \overline{f_k} \end{bmatrix} \\ \begin{bmatrix} e_k, x_k, \overline{f_1}, \dots, \overline{f_k} \end{bmatrix} \\ \begin{bmatrix} \overline{x_j}, f_j \end{bmatrix} & \text{for } 1 \leq j \leq k \\ \begin{bmatrix} x_j, f_j \end{bmatrix} & \text{for } 1 \leq j \leq k \\ \end{bmatrix}$$

The proof of the theorem states that every Q-refutation of this formula has at least 2^k steps.

With QU-resolution, The overall number of steps is linear.

QU-Resolution and QBF ABstractions

Lonsing and Biere introduced *abstractions* of QBF for preprocessing purposes in SAT 2011.

The idea is developed further in SAT 2012 by Van Gelder, Wood, Lonsing.

Essentially the "abstraction" with respect to a variable *p* treats all universal variables outer to *p* as though they were existential. For inferential purposes, this amounts to using QU-resolution on these variables.

Existential Pure Literals

These are *not* logically implied from the assumptions.

So, treat as a new assumption.

An existential pure literal cannot have a quadrangle dependency on any universal literal, so it can move scopes without changing the truth value of the formula.

Universal Pure Literals

- These are *not* logically implied from the assumptions.
- So, treat as universal reductions (i.e., clause by clause).

Justification: No existential literal can have a quadrangle dependency on any universal pure literal, so the universal pure literal can "sink" to innermost scope without changing the truth value of the formula.

Clause Learning after Assuming a Pure Existential Literal

This example shows how a learned clause containing the negation of a (now) pure literal based on the original formula can occur and be useful.

The non-obvious part is that, although the partial assignment satisfies all *original* clauses that contain the negation of the now-pure literal, it does not satisfy the learned clause. (Not all clauses are shown.)

Φ	$\exists a_1$	$\forall u_2$	$\exists b_3$	$\forall u_4$	$\exists c_5$	$\exists a_5$	$\forall u_6$	$\exists c_7$	$\exists d_7$	$\exists e_7$	$\exists a_9$	$\exists b_9$	$\exists e_9$
C_1 C_2					С5								<i>e</i> 9
C_2					C5	$\overline{a_5}$							
C_3								C_7	d_7				
C_4								С7	$\overline{d_7}$	e_7			
C_5									$\overline{d_7}$	$\overline{e_7}$			$\overline{e_9}$
$egin{array}{c} C_6 \ C_7 \ C_8 \ C_9 \end{array}$								<u>C7</u>	$\overline{d_7}$				
C_7								C_7	d_7	$\overline{e_7}$			
C_8								$\overline{C7}$			<i>a</i> 9		
C_9								<u>C7</u>			$\overline{a_9}$		
C_{10}					$\overline{C_5}$	a_5						b_9	
C_{11}										$\overline{e_7}$		$\overline{b_9}$	

Learn $D_1 = [c_7, \overline{e_9}]$, using C_5, C_4, C_3 . Learn $D_2 = [c_5]$, using C_9, C_8, D_1, C_1 . With our proposal, learn $D_3 = [\overline{e_9}]$, using C_6, C_3, D_1 .

Conclusion

QU-resolution provides a means to derive more clauses than Q-resolution.

Simply assume pure literals; don't insist they are true (or false).

Better understanding of QBF theory.