Pure Literal Rules and QU-resolution in QBF Search-Based Solvers

\author{
Allen Van Gelder \\ Computer Science Dept. \\ Univ. of California \\ Santa Cruz, CA, USA \\ ```
http://www.cse.ucsc.edu/~avg/

```
}
http://www.cse.ucsc.edu/~avg/Pos12/
These slides are pos12-trans.pdf
http://www.cse.ucsc.edu/~avg/ProofChecker/
Software directory, contains QdpllexpSimple.tar.

\section*{What are Quantified Boolean Formulas (QBFs)?}

Most general definition:
- Add quantification \((\forall u, \exists e)\) as a new propositional operation.
- A quantified variable must be true or false.

Least general definition:
- \(\mathcal{F}\) is a quantifier-free propositional formula in conjunctive normal form.
- \(\vec{Q}\) is a sequence of quantified variables, outer to inner scopes.
- \(\Phi=\vec{Q} \cdot \mathcal{F}\) is a prefix \(C N F\) (PCNF) formula.
- This paper considers closed PCNF (all variables quantified).
- Example (chart form):
\begin{tabular}{c|cccccc}
\(\Phi\) & \(\forall u\) & \(\forall v\) & \(\exists e\) & \(\exists f\) & \(\forall t\) & \(\exists d\) \\
\hline\(C_{1}\) & \(u\) & & & \(f\) & \(t\) & \(\bar{d}\) \\
\(C_{2}\) & \(\bar{u}\) & \(\bar{v}\) & \(\bar{e}\) & & \(\bar{t}\) & \(\frac{d}{d}\) \\
\(C_{3}\) & & \(v\) & \(e\) & \(f\) & \(t\) & \(d\) \\
\(\ldots\) & & & & & &
\end{tabular}

\section*{Literal Naming Convention}
- Lowercase letters near the beginning of the alphabet are existential literals (or variables, if specified in the context), e.g., \(c, d\), \(e\), etc.
- Lowercase letters near the end of the alphabet are universal literals (or variables, if specified in the context), e.g., \(t, u, v\), etc.
- \(p, q, r, s\) are of unspecified quantifier type.
- \(|p|\) denotes the variable underlying the literal \(p\). (Mainly for quantifier sequences.)

\section*{QBF as a Two-Player Game}

Two players: A is Universal, \(E\) is Existential.
\(\Phi=\vec{Q} \cdot \mathcal{F}\) is a PCNF (prefix: \(\vec{Q}\), matrix: \(\mathcal{F}\) ).
When outermost (unassigned) variable is universal, A chooses a value for it and \(\Phi\) gets simplified.
When outermost (unassigned) variable is existential, \(E\) chooses a value for it and \(\Phi\) gets simplified.
If \(\Phi\) simplifies to false, \(A\) wins. If \(\Phi\) simplifies to true, \(E\) wins.
"Definition": Truth-Value Semantics of \(\Phi\) (coarse grain):
- The value of \(\Phi\) is false (or 0 ) if and only if \(A\) has a winning strategy.
- The value of \(\Phi\) is true (or 1 ) if and only if \(E\) has a winning strategy.

\section*{Example: Two-Player Game}
\begin{tabular}{c|ccccrr} 
& \multicolumn{2}{c}{ qblock } & qblock & qblock & qblock \\
& \(\leftarrow 1 \rightarrow\) & \(\leftarrow 2 \rightarrow\) & 3 & 4 \\
\(\Phi\) & \(\forall u\) & \(\forall v\) & \(\exists e\) & \(\exists f\) & \(\forall t\) & \(\exists d\) \\
\hline\(C_{1}\) & \(u\) & & & \(f\) & \(t\) & \(\bar{d}\) \\
\(C_{2}\) & \(\bar{u}\) & \(\bar{v}\) & \(\bar{e}\) & & \(\bar{t}\) & \(\bar{d}\) \\
\(C_{3}\) & & \(v\) & \(e\) & \(f\) & \(t\) & \(d\) \\
\(\ldots\) & & & & & &
\end{tabular}

> Say \(A\) chooses \(u=0 ;\)
> \(C_{2}\) is "satisfied" and is deleted from \(\mathcal{F}\). \(u\) is deleted from \(C_{1}\)
> Then say \(A\) chooses \(v=0\) \(v\) is deleted from \(C_{3}\).
\begin{tabular}{c|cccc}
\(\Phi_{1}\) & \(\exists e\) & \(\exists f\) & \(\forall t\) & \(\exists d\) \\
\hline\(C_{1}\) & & \(f\) & \(t\) & \(\bar{d}\) \\
\(C_{3}\) & \(e\) & \(f\) & \(t\) & \(d\) \\
\(\cdots\) & & & &
\end{tabular}
\begin{tabular}{l}
\hline Next, Player \(E\) chooses values \\
\(\quad\) for \(e\) and \(f\). \\
And so on. \\
\hline
\end{tabular}

\section*{Notes:}
- Quantifier order matters between qblocks, but not within a qblock.
- One empty clause makes \(\Phi\) false (the goal of \(A\) ).
- Every clause must be satisfied to make \(\Phi\) true (the goal of \(E\) ), but one true literal suffices to satisfy a clause.

\section*{Tree Models for QBF}

For a \(\mathrm{QBF} \Phi=\vec{Q} \cdot \mathcal{F}\), a tree model of \(\Phi\) is a nonempty set of ordered assignments with certain restrictions that ensure that the set defines a tree.

An ordered assignment is a total assignment with the literals in quantifier-prefix order, outer to inner.
Each ordered assignment is a tree branch and satisfies all clauses.
\begin{tabular}{c|cccccc}
\(\Phi\) & \(\forall u\) & \(\forall v\) & \(\exists e\) & \(\exists f\) & \(\forall t\) & \(\exists d\) \\
\hline\(C_{1}\) & \(u\) & & & \(f\) & \(t\) & \(\bar{d}\) \\
\(C_{2}\) & \(\bar{u}\) & \(\bar{v}\) & \(\bar{e}\) & & \(\bar{t}\) & \(\bar{d}\) \\
\(C_{3}\) & & \(v\) & \(e\) & \(f\) & \(t\) & \(d\) \\
& \(\ldots\) & & & & & \(\bar{d}\) \\
\hline & \(\bar{u}\) & \(\bar{v}\) & \(e\) & \(f\) & \(\bar{t}\) & \(\bar{d}\) \\
& \(\bar{u}\) & \(\bar{v}\) & \(e\) & \(f\) & \(t\) & \(d\) \\
& \(\bar{u}\) & \(v\) & \(e\) & \(f\) & \(\bar{t}\) & \(\bar{d}\) \\
& \(\bar{u}\) & \(v\) & \(e\) & \(f\) & \(t\) & \(d\) \\
& \(u\) & \(\bar{v}\) & \(e\) & \(f\) & \(\bar{t}\) & \(\frac{d}{d}\) \\
\(u\) & \(\bar{v}\) & \(e\) & \(f\) & \(t\) & \(d\) \\
\(u\) & \(v\) & \(\bar{e}\) & \(f\) & \(\bar{t}\) & \(\frac{d}{d}\) \\
\(u\) & \(v\) & \(\bar{e}\) & \(f\) & \(t\) & \(d\)
\end{tabular}

The 8 ordered assignments shown are a tree model for the part of \(\Phi\) shown. There are many others.

\section*{Q-Resolution}

Two operations:
- propositional resolution on an existential clashing literal
(tautologous resolvents prohibited);
- Let \(C_{1}=[e, \alpha]\) and \(C_{2}=[\bar{e}, \beta]\).
- \(\operatorname{res}_{e}\left(C_{1}, C_{2}\right)=\alpha \cup \beta\).
- universal reduction on a tailing universal literal.
- If \(u\) is inner scope to all existentials in clause \(C\), it may be deleted (locally assigned false in \(C\) only).
- Let \(C=[u, \gamma]\).
- \(\operatorname{unrd}_{u}(C)=\gamma\).

Theorem [Kleine Büning,Karpinski,Flögel 1995]:
A PCNF \(\Phi\) is false if and only if the empty clause is derivable by Q-resolution.
Remark (speaker's opinion):
Universal reduction is a major factor in recent success of practical QBF solvers.

\section*{QU-Resolution}

A QU-derivation is the same as a Q-resolution derivation except that it includes resolutions in which the clashing literal is universal.
- Resolutions are still required to be non-tautologous.
- A QU-refutation is a QU-derivation of the empty clause.
- Regular QU-derivation: no variable appears twice as a clashing literal or reduction literal on any directed path through the derivation DAG.
- Ordered QU-derivation: variables appear in the same order on every directed path through the derivation DAG.
- Prefix-ordered QU-derivation: an ordered QU-derivation such that variables appear in outer to inner order of the quantifier prefix on paths directed away from the root of the derivation DAG.

\section*{Properties of QU-Resolution (CP 2012, to appear)}

\section*{Lemma:}

If clause \(D\) is derived from \(\Psi=\vec{Q} \cdot \mathcal{F}\) by QU-Resolution, then \(D\) is logically implied by \(\Psi\) (i.e., tree models are preserved).

\section*{Theorem:}

If (non-tautological) clause \(D\) is logically implied by \(\Psi=\vec{Q} \cdot \mathcal{F}\), then \(D^{(-)}\)can be derived from \(\Psi\) by prefix-ordered QU-Resolution. If \(D\) is the empty clause then the QU-resolution can also be a Q-resolution.

\section*{QU-Resolution May Be Exponentially Shorter than Q-Resolution}

The following QBF family is given by Kleine Büning and Lettman (1999) in the proof of their Theorem 7.4.8. The \(k\)-th QBF is:
\[
\begin{aligned}
& \exists d_{0} d_{1} e_{1} \forall x_{1} \exists d_{2} e_{2} \forall x_{2} \cdots \\
& \exists d_{k} e_{k} \forall x_{k} \exists f_{1} \cdots \exists f_{k} . \\
& {\left[d_{j}, \overline{x_{j}}, \frac{\left[d_{0}, \overline{d_{j+1}}, \overline{d_{1}}, \overline{e_{1}}\right]}{\left.\overline{d_{j+1}}\right]}\right.} \text { for } 1 \leq j<k \\
& {\left[e_{j}, x_{j}, \overline{d_{j+1}}, \overline{d_{j+1}}\right] } \text { for } 1 \leq j<k \\
& {\left[d_{k}, \overline{x_{k}}, \overline{f_{1}}, \ldots, \overline{f_{k}}\right] } \\
& {\left[e_{k}, x_{k}, \overline{f_{1}}, \ldots, \overline{f_{k}}\right] } \\
& {\left[\overline{x_{j}}, f_{j}\right] } \text { for } 1 \leq j \leq k \\
& {\left[x_{j}, f_{j}\right] } \text { for } 1 \leq j \leq k
\end{aligned}
\]

The proof of the theorem states that every Q-refutation of this formula has at least \(2^{k}\) steps.

With QU-resolution, The overall number of steps is linear.

\section*{QU-Resolution and QBF ABstractions}

Lonsing and Biere introduced abstractions of QBF for preprocessing purposes in SAT 2011.

The idea is developed further in SAT 2012 by Van Gelder, Wood, Lonsing.
Essentially the "abstraction" with respect to a variable \(p\) treats
all universal variables outer to \(p\) as though they were existential.
For inferential purposes, this amounts to using QU-resolution on these variables.

\section*{Existential Pure Literals}

These are not logically implied from the assumptions.
So, treat as a new assumption.
An existential pure literal cannot have a quadrangle dependency on any universal literal, so it can move scopes without changing the truth value of the formula.

\section*{Universal Pure Literals}
- These are not logically implied from the assumptions.
- So, treat as universal reductions (i.e., clause by clause).

Justification: No existential literal can have a quadrangle dependency on any universal pure literal, so the universal pure literal can "sink" to innermost scope without changing the truth value of the formula.

\section*{Clause Learning after Assuming a Pure Existential Literal}

This example shows how a learned clause containing the negation of a (now) pure literal based on the original formula can occur and be useful.
The non-obvious part is that, although the partial assignment satisfies all original clauses that contain the negation of the now-pure literal, it does not satisfy the learned clause. (Not all clauses are shown.)


Learn \(D_{1}=\left[c_{7}, \overline{e_{9}}\right]\), using \(C_{5}, C_{4}, C_{3}\).
Learn \(D_{2}=\left[c_{5}\right]\), using \(C_{9}, C_{8}, D_{1}, C_{1}\).
With our proposal, learn \(D_{3}=\left[\overline{e_{9}}\right]\), using \(C_{6}, C_{3}, D_{1}\).

\section*{Conclusion}

QU-resolution provides a means to derive more clauses than Q-resolution.
Simply assume pure literals; don't insist they are true (or false).
Better understanding of QBF theory.```

