Concurrent Cube-and-Conquer

Peter van der Tak ${ }^{1}$
Marijn Heule ${ }^{1,2}$
Armin Biere ${ }^{3}$

${ }^{1}$ Delft University of Technology, The Netherlands
${ }^{2}$ University of Texas at Austin, United States
${ }^{3}$ Johannes Kepler University Linz, Austria

$$
\text { June 16, } 2012
$$

Introduction

- lookahead (LA)
- recursively split instance: binary search tree
- good for small, hard problems
- conflict-driven clause learning (CDCL)
- learn implied clauses: less systematic search
- best for large, "easy" industrial instances
- cube-and-conquer (CC)
- partition using LA into thousands or millions of subproblems
- solve subproblems in parallel using CDCL

Cube-and-conquer

Cube-and-conquer

Old CC cutoff heuristic

$d\left(c_{\text {id }}\right):=\left|\varphi_{\text {dec }}\right|^{2} \cdot\left(\left|\varphi_{\text {dec }}\right|+\left|\varphi_{\text {imp }}\right|\right)$
$d\left(c_{\text {id }}\right)>$ threshold \rightarrow cut off
Dynamic threshold:

- LA refutes cube \rightarrow decrease
- increase gradually

Motivation

Limitations of cube-and-conquer (CC):

- partitioning not ideal
- lookahead not always effective

Proposed solutions:

- run CDCL and LA concurrently in partitioning phase
- predict unsuitable instances

Concurrent cube-and-conquer

Solve by adding CDCL to cube phase:

- run LA and CDCL concurrently
- add decisions by LA as assumptions to CDCL
- use existing solvers (March_rw and MiniSAT 2.2)

Concurrent cube-and-conquer

(Cx) refuted by LA
(Cx) refuted by CDCL

Concurrent cube-and-conquer

(Cx) refuted by LA
(Cx) refuted by CDCL

Concurrent cube-and-conquer

(cx) current
(Cx) refuted by LA
(Cx) refuted by CDCL

Concurrent cube-and-conquer

(c) cube
(cx) current
(Cx) refuted by LA
(Cx) refuted by CDCL

Concurrent cube-and-conquer

(cx) current
(cx refuted by LA
(Cx) refuted by CDCL

Concurrent cube-and-conquer

Concurrent cube-and-conquer

(Cx) current
(Cx) refuted by LA
(Cx) refuted by CDCL

Concurrent cube-and-conquer

(Cx) cube
(c) current
(Cx) refuted by LA
(Cx) refuted by CDCL

Concurrent cube-and-conquer

(Cx) current
(Cx) refuted by LA
(Cx) refuted by CDCL

Concurrent cube-and-conquer

(c) cube

(C_{x} current
(Cx) refuted by LA
(Cx) refuted by CDCL

Concurrent cube-and-conquer

c_{x} current
(cx refuted by LA
(Cx) refuted by CDCL

Concurrent cube-and-conquer

(c) cube

(C_{x} current
(Cx) refuted by LA
(Cx) refuted by CDCL

Concurrent cube-and-conquer

(Cx) current
(Cx) refuted by LA
(Cx) refuted by CDCL

Concurrent cube-and-conquer

(cx) refuted by LA
(cx refuted by CDCL

Concurrent cube-and-conquer

(cx) refuted by LA
(Cx) refuted by CDCL

Concurrent cube-and-conquer

Concurrent cube-and-conquer

(cx) refuted by LA
(c) refuted by CDCL

Concurrent cube-and-conquer

(cx) refuted by LA
(c) refuted by CDCL

Concurrent cube-and-conquer

C_{X} cube
c_{x} current

(cx) refuted by LA
(C) refuted by CDCL

Concurrent cube-and-conquer

C_{X} cube
c_{x} current

(Cx) refuted by LA
(Cx) refuted by CDCL

Concurrent cube-and-conquer

C_{x} cube
c_{x} current

(Cx) refuted by LA
(Cx) refuted by CDCL

Concurrent cube-and-conquer

(Cx) refuted by LA
(c) refuted by CDCL

Concurrent cube-and-conquer

(Cx) refuted by LA
(cx refuted by CDCL

Concurrent cube-and-conquer

(CX) refuted by LA
(cx refuted by CDCL

Concurrent cube-and-conquer

C_{X} cube
c_{x} current

(Cx) refuted by LA
(Cx) refuted by CDCL

Concurrent cube-and-conquer

C_{X} cube
c_{x} current

(Cx) refuted by LA
(Cx) refuted by CDCL

Concurrent cube-and-conquer

(CX) refuted by LA
(c) refuted by CDCL

Concurrent cube-and-conquer

(CX) refuted by LA
(c) refuted by CDCL

Concurrent cube-and-conquer

(cx) refuted by LA
(cx refuted by CDCL

Concurrent cube-and-conquer

(Cx) cube
(Cx) current

unsat
$\left\langle c_{4}\right\rangle$

Concurrent cube-and-conquer

(cx) refuted by LA
(cx refuted by CDCL

Concurrent cube-and-conquer

(cx) refuted by LA
(cx refuted by CDCL

Concurrent cube-and-conquer

(cx) refuted by LA
(cx) refuted by CDCL

Use information from the CDCL solver in CCC's cutoff heuristic
Like in CC, $d\left(c_{\mathrm{id}}\right)>$ threshold \rightarrow cut off
But now:

- CDCL refutes cube \rightarrow decrease threshold
- LA refutes cube \rightarrow increase threshold (vs. decrease in CC)

Motivation

Limitations of cube-and-conquer (CC):

- partitioning not ideal
- lookahead not always effective

Proposed solutions:

- run CDCL and LA concurrently in partitioning phase
- predict unsuitable instances

CCC without prediction

Run time of MiniSAT (vertical) and $\mathrm{CCC}_{\text {mini }}$ (horizontal) on SAT 2009 and 2011 instances.
Application (left) and crafted (right) instances.

Predicting effectiveness of (C)CC

Lookahead effective if

- lookahead refutes cubes before CDCL
- limited number of right branches

Use pure CDCL if CCC seems ineffective after 5 seconds

Predicting effectiveness of (C)CC

Run time of MiniSAT (vertical) and $\mathrm{CCC}_{\text {mini }}$ (horizontal) on instances selected (■) and not selected ($\boldsymbol{\Delta}$) by the predictor. Application (left) and crafted (right) instances.

Results on filtered crafted instances

Results on filtered application instances

Conclusion

CCC solves CC's limitations

- CCC uses CDCL to find a better cutoff point
- CCC switches to pure CDCL if partitioning performs poorly

And is

- often faster than CDCL, LA, and CC
- natural to parallelize
- and ready to compete in the SAT Challenge 2012

Concurrent Cube-and-Conquer

Peter van der Tak ${ }^{1}$
Marijn Heule ${ }^{1,2}$
Armin Biere ${ }^{3}$

${ }^{1}$ Delft University of Technology, The Netherlands
${ }^{2}$ University of Texas at Austin, United States
${ }^{3}$ Johannes Kepler University Linz, Austria

$$
\text { June 16, } 2012
$$

