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Efficient SAT Solvers

During the last decade

• SAT solvers improved heavily

• There is an own research field

– Search heuristics

– Preprocessing and inprocessing

– Parameter tuning

– . . .

• Each year, the performance of the tools increases

• The architecture turned parallel
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Optimization Problems

Having a solution only is often not enough

• A solution should be

– nice (nurse rostering)

– small (size of a plan)

– optimal (number of cargo trains per hour)

• Searching the optimal solution is more complex

• Can we use advanced SAT technology efficiently?
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Description of Instances

• There are hard constraints . . .

– Each train has to go on its route

– The cost of these constraints is infinite

• . . . and soft constraints

– Having less trains carrying the same goods would be nice

– Missing such a goal has a price (each)

• The overall cost has to be minimized
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How to solve PBO

Problems are described for example as PB instance:

• ∑
i wixi . k

• wi and k are integers

• . is a classical relational operators =,>,<,≤ or ≥

• Minimize the sum
∑

i wixi

Solving:

• Translate the instance to SAT and get a model J

• Evaluate r =
∑

i wiJ(xi)

• Solver formula with new bound r− 1 until the formula is unsatisfiable
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How to turn MaxSAT into PBO

MaxSAT:

• Clauses can have weights

• Minimize the weights of unsatisfied clauses

Translate into PBO:

• Clause Ci with weight wi is turned into Ci ∨ xi

• We add to the current minimization wi · xi

• Final result: minimize
∑

i wixi as in PBO
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How to turn WBO into MaxSAT

Weighted Boolean Optimization (WBO):

• PB instances

• each PB constraint Di can have a weight wi

Translate into PBO:

• Constraint Di with weight wi is turned into Di ∨ xi

• We add to the current minimization wi · xi

Another translation into MaxSAT:

• Constraint Di with weight wi is translated into clauses Ci,j

• We turn each clause Ci,j into Ci,j ∨ xi

• We add to the current minimization wi · xi

• Note: the number of clauses is not changed
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Reason for npSolver

Why do we implement npSolver?

• Its a good idea to use SAT solvers

• We can use any SAT solver (also parallel, default: glucose)

• PB instances are mixed with clauses and cardinality constraints

• Existing solvers (e.g. MiniSat+) do not support all features

• We can utilize incremental solving
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Why should we translate PB into SAT?

We measured the distribution of constraints in the PB competition instances

• 90 % can be translated with clauses best (including BDD-path)

• Almost 10 % are general PB constraints

• There are very few cardinality constraints (for special encoding)

• There are only a few very large constraints

Note:

• The measurement reflects all the constraints

• The distribution per instance can be different

• Currently, we support up to 64 bits
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When to use which encoding?

What to do after the PB constraint have been read?

• Turn them into a ≤ type constraint

• Turn all weights into positive weights

• Determining the type of the constraint

– trivial, at-most-one, at-most-k

– general PB constraint with BDD, BDD-path or ADDERs

• Picking the right encoding

• Translating to SAT

Encoding AMO 2-product Sorting NW BDDs Watch Dog Adder NW

absolute 611859 19227 112253 22967061 517 567

relative 2.58% 0.08% 0.47% 96.86% 0.00% 0.00%
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Details AMO

There are several ways to encode the at-most one constraint

• Pairwise encoding

• Sequential counters

• Log-encoding

• 2-product encoding (best asymptotic bound: 2n + 4 ·
√

n + O( 4√n))

• Split-AMO

– We split a bigger AMO and introduce fresh variables

– x1 + · · ·+ xn ≤ 1  (y +
b n

2 c∑
i=1

xi ≤ 1)
∧

(¬y +
n∑

i=b n
2 c+1

xi ≤ 1)

– Produces ∼ 3n clauses, best for small n
– Is there a reference for this?
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Details on BDDs

BDDs can be understood as dynamic programming approach

• The weights of satisfied literals are summed up iteratively

• Per input variable the sum either stays or increases (ITE gate)

• If the bounds are reached, the translation can be stopped

– The current sum is bigger than k

• Usually, only 2 clauses per node are needed for encoding a gate

• For incremental solving, only the last bound needs to be altered

• Note: we do not re-use gates yet among multiple PB constraints

• Note: if the path in the BDD to 0 are few, we encode the clauses
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How to solve PBO
npSolver offers two main methods to search for an optimal solution

• Top-down search, by decreasing the bounds

• Binary search, always partitioning the remaining search space

• We include an interface to incremental solvers via pipes

• Surprisingly, non-incremental is best, both searches are equally well

For MaxSAT, we decrease the number of k in the cardinality constraint

• Encoding the constraint needs several clauses

• Encoding a PB depends on k
• E.g. for weighted MaxSAT the constraint is huge

• By reducing k by some r, we can approximate and save clauses

• Final constraint:
∑

id
wi
r e < b

k
r c
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Incremental Solving

• For the top-down approach, the solver can be kept

• Saving learned clauses should improve the search

• In binary search, a new solver has to be created for failed formulas

PB Encoder CP2

Optimization

Constraint

Iterative

Solver

BDD, Sorting Network, . . .

PB F F′
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How to use the tool
With npSolver, you can:

• Displays its parameters

• Easily encode PB into SAT (also MaxSAT and WBO)

• Gives statistics about the translation

• Use a SAT solver of your choice as solver

• Force the translation to a specific encoding

Ongoing work includes

• Giving access to each encoding via a library

• Adding special cases for the “=” constraint (BDD,Adder)

• Support more encodings

• Improve modularity

• Furthermore: Optimization with (parallel) MaxSAT solvers?
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Where can you find the tool?

http://tools.computational-logic.org

We (soon) provide

• Statically linked binaries

• The source code of the current version (under GPL 2)

• We will put updates and fixes online
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Thanks for your attention

The solver is available at http://tools.computational-logic.org
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