

NPSOLVER

A SAT Based Solver For Optimization Problems

Norbert Manthey and Peter Steinke

Trento, 16.06.2012

Efficient SAT Solvers

During the last decade

- SAT solvers improved heavily
- There is an own research field
 - Search heuristics
 - Preprocessing and inprocessing
 - Parameter tuning
 - ...
- Each year, the performance of the tools increases
- The architecture turned parallel

Optimization Problems

Having a solution only is often not enough

- A solution should be
 - nice (nurse rostering)
 - small (size of a plan)
 - optimal (number of cargo trains per hour)

Optimization Problems

Having a solution only is often not enough

- A solution should be
 - nice (nurse rostering)
 - small (size of a plan)
 - optimal (number of cargo trains per hour)
- Searching the optimal solution is more complex

Optimization Problems

Having a solution only is often not enough

- A solution should be
 - nice (nurse rostering)
 - small (size of a plan)
 - optimal (number of cargo trains per hour)
- Searching the optimal solution is more complex
- Can we use advanced SAT technology efficiently?

Outline

Motivation Optimization Problems

Details in npSolver Translate PB to SAT Solve the Optimization Problem Demo Conclusion

Description of Instances

- There are hard constraints ...
 - Each train has to go on its route
 - The cost of these constraints is infinite
- ... and soft constraints
 - Having less trains carrying the same goods would be nice
 - Missing such a goal has a price (each)
- The overall cost has to be minimized

Problems are described for example as PB instance:

- $\sum_i w_i x_i \triangleright k$
- $\bullet~w_i$ and k are integers
- $\,\triangleright$ is a classical relational operators =, >, <, \leq or \geq

Problems are described for example as PB instance:

- $\sum_i w_i x_i \triangleright k$
- $\bullet~w_i$ and k are integers
- \triangleright is a classical relational operators =, >, <, \leq or \geq
- Minimize the sum $\sum_i w_i x_i$

Problems are described for example as PB instance:

- $\sum_i w_i x_i \triangleright k$
- $\bullet~w_i$ and k are integers
- \triangleright is a classical relational operators =, >, <, \leq or \geq
- Minimize the sum $\sum_i w_i x_i$

Solving:

- Translate the instance to SAT and get a model J
- Evaluate $r = \sum_i w_i J(x_i)$
- Solver formula with new bound r 1 until the formula is unsatisfiable

How to turn MaxSAT into PBO

MaxSAT:

- Clauses can have weights
- Minimize the weights of unsatisfied clauses

How to turn MaxSAT into PBO

MaxSAT:

- Clauses can have weights
- Minimize the weights of unsatisfied clauses

Translate into PBO:

- $\bullet~$ Clause C_i with weight w_i is turned into $C_i \lor x_i$
- $\bullet~$ We add to the current minimization $w_i \cdot x_i$
- Final result: minimize $\sum_i w_i x_i$ as in PBO

How to turn WBO into MaxSAT

Weighted Boolean Optimization (WBO):

- PB instances
- $\bullet~$ each PB constraint D_i can have a weight w_i

How to turn WBO into MaxSAT

Weighted Boolean Optimization (WBO):

- PB instances
- $\bullet~$ each PB constraint D_i can have a weight w_i

Translate into PBO:

- $\bullet~$ Constraint D_i with weight w_i is turned into $D_i \lor x_i$
- $\bullet~$ We add to the current minimization $w_i \cdot x_i$

How to turn WBO into MaxSAT

Weighted Boolean Optimization (WBO):

- PB instances
- $\bullet~$ each PB constraint D_i can have a weight w_i

Translate into PBO:

- $\bullet~$ Constraint D_i with weight w_i is turned into $D_i \lor x_i$
- $\bullet~$ We add to the current minimization $w_i \cdot x_i$

Another translation into MaxSAT:

- Constraint D_i with weight w_i is translated into clauses C_{i,j}
- We turn each clause $C_{i,j}$ into $C_{i,j} \lor x_i$
- $\bullet~$ We add to the current minimization $w_i \cdot x_i$
- Note: the number of clauses is not changed

Outline

Motivation Optimization Problems **Details in npSolver** Translate PB to SAT Solve the Optimization Problem Demo Conclusion

Reason for npSolver

Why do we implement npSolver?

- Its a good idea to use SAT solvers
- We can use any SAT solver (also parallel, default: glucose)
- PB instances are mixed with clauses and cardinality constraints
- Existing solvers (e.g. MiniSat+) do not support all features
- We can utilize incremental solving

Outline

Motivation Optimization Problems Details in npSolver Translate PB to SAT Solve the Optimization Problem Demo Conclusion

Why should we translate PB into SAT?

We measured the distribution of constraints in the PB competition instances

- 90 % can be translated with clauses best (including BDD-path)
- Almost 10% are general PB constraints
- There are very few cardinality constraints (for special encoding)
- There are only a few very large constraints

Why should we translate PB into SAT?

We measured the distribution of constraints in the PB competition instances

- 90 % can be translated with clauses best (including BDD-path)
- Almost 10% are general PB constraints
- There are very few cardinality constraints (for special encoding)
- There are only a few very large constraints

Note:

- The measurement reflects all the constraints
- The distribution per instance can be different
- Currently, we support up to 64 bits

When to use which encoding?

What to do after the PB constraint have been read?

- Turn them into a \leq type constraint
- Turn all weights into positive weights
- Determining the type of the constraint
 - trivial, at-most-one, at-most-k
 - general PB constraint with BDD, BDD-path or ADDERs
- Picking the right encoding
- Translating to SAT

When to use which encoding?

What to do after the PB constraint have been read?

- Picking the right encoding
- Translating to SAT

Encoding	AMO	2-product	Sorting NW	BDDs	Watch Dog	Adder NW
absolute	611859	19227	112253	22967061	517	567
relative	2.58%	0.08%	0.47%	96.86%	0.00%	0.00%

There are several ways to encode the at-most one constraint

- Pairwise encoding
- Sequential counters
- Log-encoding

There are several ways to encode the at-most one constraint

- Pairwise encoding
- Sequential counters
- Log-encoding
- 2-product encoding (best asymptotic bound: $2n + 4 \cdot \sqrt{n} + O(\sqrt[4]{n})$)

There are several ways to encode the at-most one constraint

- Pairwise encoding
- Sequential counters
- Log-encoding
- 2-product encoding (best asymptotic bound: $2n + 4 \cdot \sqrt{n} + O(\sqrt[4]{n})$)
- Split-AMO
 - We split a bigger AMO and introduce fresh variables

$$- x_1 + \dots + x_n \leq 1 \ \rightsquigarrow \ \left(y + \sum_{i=1}^{\lfloor \frac{n}{2} \rfloor} x_i \leq 1\right) \ \bigwedge \ \left(\neg y + \sum_{i=\lfloor \frac{n}{2} \rfloor + 1}^n x_i \leq 1\right)$$

– Produces $\sim 3n$ clauses, best for small n

There are several ways to encode the at-most one constraint

- Pairwise encoding
- Sequential counters
- Log-encoding
- 2-product encoding (best asymptotic bound: $2n + 4 \cdot \sqrt{n} + O(\sqrt[4]{n})$)
- Split-AMO
 - We split a bigger AMO and introduce fresh variables

$$-x_1+\dots+x_n\leq 1 \ \rightsquigarrow \ (y+\sum_{i=1}^{\lfloor\frac{n}{2}\rfloor}x_i\leq 1) \ \ \bigwedge \ \ (\neg y+\sum_{i=\lfloor\frac{n}{2}\rfloor+1}^n x_i\leq 1)$$

- Produces $\sim 3n$ clauses, best for small n
- Is there a reference for this?

Details on BDDs

BDDs can be understood as dynamic programming approach

- The weights of satisfied literals are summed up iteratively
- Per input variable the sum either stays or increases (ITE gate)
- If the bounds are reached, the translation can be stopped
 - The current sum is bigger than k
- Usually, only 2 clauses per node are needed for encoding a gate
- For incremental solving, only the last bound needs to be altered

Details on BDDs

BDDs can be understood as dynamic programming approach

- The weights of satisfied literals are summed up iteratively
- Per input variable the sum either stays or increases (ITE gate)
- If the bounds are reached, the translation can be stopped
 - The current sum is bigger than k
- Usually, only 2 clauses per node are needed for encoding a gate
- For incremental solving, only the last bound needs to be altered
- Note: we do not re-use gates yet among multiple PB constraints
- Note: if the path in the BDD to 0 are few, we encode the clauses

Outline

Motivation Optimization Problems Details in npSolver Translate PB to SAT Solve the Optimization Problem Demo Conclusion

npSolver offers two main methods to search for an optimal solution

- Top-down search, by decreasing the bounds
- Binary search, always partitioning the remaining search space

npSolver offers two main methods to search for an optimal solution

- Top-down search, by decreasing the bounds
- Binary search, always partitioning the remaining search space
- We include an interface to incremental solvers via pipes

npSolver offers two main methods to search for an optimal solution

- Top-down search, by decreasing the bounds
- Binary search, always partitioning the remaining search space
- We include an interface to incremental solvers via pipes
- Surprisingly, non-incremental is best, both searches are equally well

npSolver offers two main methods to search for an optimal solution

- Top-down search, by decreasing the bounds
- Binary search, always partitioning the remaining search space
- We include an interface to incremental solvers via pipes
- Surprisingly, non-incremental is best, both searches are equally well

For MaxSAT, we decrease the number of k in the cardinality constraint

- Encoding the constraint needs several clauses
- Encoding a PB depends on k
- E.g. for weighted MaxSAT the constraint is huge
- By reducing k by some r, we can approximate and save clauses
- Final constraint: $\sum_{i} \lceil \frac{w_i}{r} \rceil < \lfloor \frac{k}{r} \rfloor$

TU Dresden, 16.06.2012

Incremental Solving

- For the top-down approach, the solver can be kept
- Saving learned clauses should improve the search

Incremental Solving

- For the top-down approach, the solver can be kept
- Saving learned clauses should improve the search

Incremental Solving

- For the top-down approach, the solver can be kept
- Saving learned clauses should improve the search
- In binary search, a new solver has to be created for failed formulas

Outline

Motivation Optimization Problems Details in npSolver Translate PB to SAT Solve the Optimization Problem **Demo** Conclusion

How to use the tool

With npSolver, you can:

- Displays its parameters
- Easily encode PB into SAT (also MaxSAT and WBO)
- Gives statistics about the translation
- Use a SAT solver of your choice as solver
- Force the translation to a specific encoding

How to use the tool

With npSolver, you can:

- Displays its parameters
- Easily encode PB into SAT (also MaxSAT and WBO)
- Gives statistics about the translation
- Use a SAT solver of your choice as solver
- Force the translation to a specific encoding

Ongoing work includes

- Giving access to each encoding via a library
- Adding special cases for the "=" constraint (BDD,Adder)
- Support more encodings
- Improve modularity
- Furthermore: Optimization with (parallel) MaxSAT solvers?

TU Dresden, 16.06.2012

npSolver

Outline

Motivation Optimization Problems Details in npSolver Translate PB to SAT Solve the Optimization Problem Demo Conclusion

Where can you find the tool?

http://tools.computational-logic.org

We (soon) provide

- Statically linked binaries
- The source code of the current version (under GPL 2)
- We will put updates and fixes online

Thanks for your attention

The solver is available at http://tools.computational-logic.org

TU Dresden, 16.06.2012

npSolver

slide 23 of 23