
Structure Preserved by XCSP3
An Interesting Feature for Competitions

Christophe Lecoutre

CRIL-CNRS UMR 8188
Universite d’Artois

Lens, France

Pragmatics of Constraint Reasoning
August 28, 2017

1

Outline

1 Modeling with MCSP3

2 Representing Instances with XCSP3
Representing Variables
Representing Constraints
Representing Objectives

3 Structure Preserved by XCSP3

4 What about Competitions?

2

Modeling Languages

Modeling languages are languages that can be used to model problems,
using some form of control and abstraction.

Typically, a model represents a family of problem instances, by referring
to some data parameters. Modeling a (family of) problem involves:

1 the description of the structure of the data, seen as parameters, for
the problem

2 the description of the model, taking data parameters into account,
using an appropriate language

3 the generation of the effective data (files) corresponding to the
different instances to be solved

Let us illustrate this with the academic problem “All-Interval Series”.

3

Modeling Languages

Modeling languages are languages that can be used to model problems,
using some form of control and abstraction.

Typically, a model represents a family of problem instances, by referring
to some data parameters. Modeling a (family of) problem involves:

1 the description of the structure of the data, seen as parameters, for
the problem

2 the description of the model, taking data parameters into account,
using an appropriate language

3 the generation of the effective data (files) corresponding to the
different instances to be solved

Let us illustrate this with the academic problem “All-Interval Series”.

3

Modeling Languages

Modeling languages are languages that can be used to model problems,
using some form of control and abstraction.

Typically, a model represents a family of problem instances, by referring
to some data parameters. Modeling a (family of) problem involves:

1 the description of the structure of the data, seen as parameters, for
the problem

2 the description of the model, taking data parameters into account,
using an appropriate language

3 the generation of the effective data (files) corresponding to the
different instances to be solved

Let us illustrate this with the academic problem “All-Interval Series”.

3

All-Interval Series (CSPLib 007)

Given n ∈ N, find a vector x = 〈x1, x2, . . . , xn〉, such that

• x is a permutation of {0, 1, . . . , n − 1}
• y = 〈y1, y2, . . . , yn−1〉 = 〈|x2 − x1|, |x3 − x2|, . . . , |xn − xn−1|〉 is a

vector that is a permutation of {1, 2, . . . , n − 1}.

So, now, we have to:

1 define the structure (type) of the data for this problem

2 define the model, parameterized with data structure

3 propose effective data corresponding to different problem instances

4

All-Interval Series (CSPLib 007)

Given n ∈ N, find a vector x = 〈x1, x2, . . . , xn〉, such that

• x is a permutation of {0, 1, . . . , n − 1}
• y = 〈y1, y2, . . . , yn−1〉 = 〈|x2 − x1|, |x3 − x2|, . . . , |xn − xn−1|〉 is a

vector that is a permutation of {1, 2, . . . , n − 1}.

So, now, we have to:

1 define the structure (type) of the data for this problem

2 define the model, parameterized with data structure

3 propose effective data corresponding to different problem instances

4

Data for All-Interval Series

We just need an integer for representing the order (n) of the problem
instance.

Which format to choose for representing data?

• Tabular (Text)

• XML

• JSON

Hence, JSON is a good choice for representing effective data. For
example, for order 5, we can generate a file containing:

{
"n": 5

}

Remark.
Technically, when the data parameters are very basic, there is no real
need to generate data files.

5

Data for All-Interval Series

We just need an integer for representing the order (n) of the problem
instance.

Which format to choose for representing data?

• Tabular (Text)

• XML

• JSON

Hence, JSON is a good choice for representing effective data. For
example, for order 5, we can generate a file containing:

{
"n": 5

}

Remark.
Technically, when the data parameters are very basic, there is no real
need to generate data files.

5

Data for All-Interval Series

We just need an integer for representing the order (n) of the problem
instance.

Which format to choose for representing data?

• Tabular (Text)

• XML

• JSON⇐ a lightweight data-interchange format (our choice)

Hence, JSON is a good choice for representing effective data. For
example, for order 5, we can generate a file containing:

{
"n": 5

}

Remark.
Technically, when the data parameters are very basic, there is no real
need to generate data files.

5

Data for All-Interval Series

We just need an integer for representing the order (n) of the problem
instance.

Which format to choose for representing data?

• Tabular (Text)

• XML

• JSON⇐ a lightweight data-interchange format (our choice)

Hence, JSON is a good choice for representing effective data. For
example, for order 5, we can generate a file containing:

{
"n": 5

}

Remark.
Technically, when the data parameters are very basic, there is no real
need to generate data files.

5

Data for All-Interval Series

We just need an integer for representing the order (n) of the problem
instance.

Which format to choose for representing data?

• Tabular (Text)

• XML

• JSON⇐ a lightweight data-interchange format (our choice)

Hence, JSON is a good choice for representing effective data. For
example, for order 5, we can generate a file containing:

{
"n": 5

}

Remark.
Technically, when the data parameters are very basic, there is no real
need to generate data files.

5

Model for All-Interval Series

With n being the unique parameter for this problem, the structure of a
natural model is:

• Variables
• x , one-dimensional array of n integer variables
• y , one-dimensional array of n − 1 integer variables

• Constraints
• two constraints allDifferent

• a group of constraints linking x and y

Which language to choose for building models?

• AMPL

• OPL

• MiniZinc

• Essence

• MCSP3

6

Model for All-Interval Series

With n being the unique parameter for this problem, the structure of a
natural model is:

• Variables
• x , one-dimensional array of n integer variables
• y , one-dimensional array of n − 1 integer variables

• Constraints
• two constraints allDifferent

• a group of constraints linking x and y

Which language to choose for building models?

• AMPL

• OPL

• MiniZinc

• Essence

• MCSP3

6

Model for All-Interval Series

With n being the unique parameter for this problem, the structure of a
natural model is:

• Variables
• x , one-dimensional array of n integer variables
• y , one-dimensional array of n − 1 integer variables

• Constraints
• two constraints allDifferent

• a group of constraints linking x and y

Which language to choose for building models?

• AMPL

• OPL

• MiniZinc

• Essence

• MCSP3⇐ a Java-based API (our choice)

6

MCSP3 Model for All-Interval Series

class AllInterval implements ProblemAPI {
// Data
int n;

public void model() {
// Variables
Var[] x = array("x", size(n), dom(range(n)),

"x[i] is the ith value of the series");
Var[] y = array("y", size(n-1), dom(range(1, n-1)),

"y[i] is the distance from x[i] to x[i+1]");

// Constraints
allDifferent(x);
allDifferent(y);
forall(range(n - 1),

i -> equal(y[i], dist(x[i], x[i+1])));
}

}

7

Modelling Languages and Solvers

Unfortunately, most of the solvers cannot directly read/understand
modeling languages. For each problem instance, identified by a model and
effective data, we have to generate a specific representation (new file).

Which format to choose for representing instances?

• XCSP 2.1

• FlatZinc

• XCSP3

Important:

• XCSP 2.1 and FlatZinc are flat formats

• XCSP3 is an intermediate format that preserves the structure of the
problems/models

8

Modelling Languages and Solvers

Unfortunately, most of the solvers cannot directly read/understand
modeling languages. For each problem instance, identified by a model and
effective data, we have to generate a specific representation (new file).

Which format to choose for representing instances?

• XCSP 2.1

• FlatZinc

• XCSP3

Important:

• XCSP 2.1 and FlatZinc are flat formats

• XCSP3 is an intermediate format that preserves the structure of the
problems/models

8

Modelling Languages and Solvers

Unfortunately, most of the solvers cannot directly read/understand
modeling languages. For each problem instance, identified by a model and
effective data, we have to generate a specific representation (new file).

Which format to choose for representing instances?

• XCSP 2.1

• FlatZinc

• XCSP3⇐ an XML-based representation (our choice)

Important:

• XCSP 2.1 and FlatZinc are flat formats

• XCSP3 is an intermediate format that preserves the structure of the
problems/models

8

Modelling Languages and Solvers

Unfortunately, most of the solvers cannot directly read/understand
modeling languages. For each problem instance, identified by a model and
effective data, we have to generate a specific representation (new file).

Which format to choose for representing instances?

• XCSP 2.1

• FlatZinc

• XCSP3⇐ an XML-based representation (our choice)

Important:

• XCSP 2.1 and FlatZinc are flat formats

• XCSP3 is an intermediate format that preserves the structure of the
problems/models

8

XCSP3 Instance: AllInterval-05

<instance format="XCSP3" type="CSP">
<variables >

<array id="x" note="x[i]: the ith value of the series"
size="[5]"> 0..4 </array >

<array id="y" note="y[i]: distance from x[i] to x[i+1]"
size="[4]"> 1..4 </array >

</variables >
<constraints >

<allDifferent > x[] </allDifferent >
<allDifferent > y[] </allDifferent >
<group >

<intension > eq(%0,dist (%1 ,%2)) </intension >
<args > y[0] x[0] x[1] </args >
<args > y[1] x[1] x[2] </args >
<args > y[2] x[2] x[3] </args >
<args > y[3] x[3] x[4] </args >

</group >
</constraints >

</instance >

9

Modeling Languages and Formats

Modeling
Languages

Intermediate
Format

Flat
Formats

+

−

OPL, ESRA, MiniZ-
inc, Essence, MCSP3, ...

XCSP3

XCSP 2.1, FlatZinc, wcsp

A
b

straction

www.xcsp.org

10

www.xcsp.org

A Complete Modeling/Solving Toolchain

MCSP3 Model Data

Compiler

XCSP3 Instance

AbsCon Choco OscaR Sat4J ...

11

Mainstream Technologies

The complete Toolchain MCSP3 + XCSP3 has many advantages:

• JSON, Java and XML are robust mainstream technologies

• Using JSON permits to have a unified notation, easy to read for
both humans and machines

• Using Java permits the user to avoid learning again a new
programming language

• Using a coarse-grained XML structure permits to have quite readable
problem descriptions, easy to read for both humans and machines

Remark.
At the intermediate level, using JSON instead of XML is possible but has
some (minor) drawbacks.

12

Mainstream Technologies

The complete Toolchain MCSP3 + XCSP3 has many advantages:

• JSON, Java and XML are robust mainstream technologies

• Using JSON permits to have a unified notation, easy to read for
both humans and machines

• Using Java permits the user to avoid learning again a new
programming language

• Using a coarse-grained XML structure permits to have quite readable
problem descriptions, easy to read for both humans and machines

Remark.
At the intermediate level, using JSON instead of XML is possible but has
some (minor) drawbacks.

12

Mainstream Technologies

The complete Toolchain MCSP3 + XCSP3 has many advantages:

• JSON, Java and XML are robust mainstream technologies

• Using JSON permits to have a unified notation, easy to read for
both humans and machines

• Using Java permits the user to avoid learning again a new
programming language

• Using a coarse-grained XML structure permits to have quite readable
problem descriptions, easy to read for both humans and machines

Remark.
At the intermediate level, using JSON instead of XML is possible but has
some (minor) drawbacks.

12

Mainstream Technologies

The complete Toolchain MCSP3 + XCSP3 has many advantages:

• JSON, Java and XML are robust mainstream technologies

• Using JSON permits to have a unified notation, easy to read for
both humans and machines

• Using Java permits the user to avoid learning again a new
programming language

• Using a coarse-grained XML structure permits to have quite readable
problem descriptions, easy to read for both humans and machines

Remark.
At the intermediate level, using JSON instead of XML is possible but has
some (minor) drawbacks.

12

Mainstream Technologies

The complete Toolchain MCSP3 + XCSP3 has many advantages:

• JSON, Java and XML are robust mainstream technologies

• Using JSON permits to have a unified notation, easy to read for
both humans and machines

• Using Java permits the user to avoid learning again a new
programming language

• Using a coarse-grained XML structure permits to have quite readable
problem descriptions, easy to read for both humans and machines

Remark.
At the intermediate level, using JSON instead of XML is possible but has
some (minor) drawbacks.

12

Mainstream Technologies

The complete Toolchain MCSP3 + XCSP3 has many advantages:

• JSON, Java and XML are robust mainstream technologies

• Using JSON permits to have a unified notation, easy to read for
both humans and machines

• Using Java permits the user to avoid learning again a new
programming language

• Using a coarse-grained XML structure permits to have quite readable
problem descriptions, easy to read for both humans and machines

Remark.
At the intermediate level, using JSON instead of XML is possible but has
some (minor) drawbacks.

12

Outline

1 Modeling with MCSP3

2 Representing Instances with XCSP3
Representing Variables
Representing Constraints
Representing Objectives

3 Structure Preserved by XCSP3

4 What about Competitions?

13

Skeleton of XCSP3 Instances

<instance format="XCSP3" type="frameworkType">

</instance>

Syntax

14

Skeleton of XCSP3 Instances

<instance format="XCSP3" type="frameworkType">
<variables>

(<var.../>
| <array.../>

)+
</variables>

</instance>

Syntax

15

Skeleton of XCSP3 Instances

<instance format="XCSP3" type="frameworkType">

<constraints>
(<constraint.../>

| <metaConstraint.../>
| <group.../>
| <block.../>

)*
</constraints>

</instance>

Syntax

16

Skeleton of XCSP3 Instances

<instance format="XCSP3" type="frameworkType">

[<objectives [combination="combinationType"]>
(<minimize.../>

| <maximize.../>
)+

</objectives>]

</instance>

Syntax

17

Skeleton of XCSP3 Instances

<instance format="XCSP3" type="frameworkType">

[<annotations.../>]
</instance>

Syntax

18

Skeleton of XCSP3 Instances

<instance format="XCSP3" type="frameworkType">
<variables>

(<var.../>
| <array.../>

)+
</variables>
<constraints>

(<constraint.../>
| <metaConstraint.../>
| <group.../>
| <block.../>

)*
</constraints>
[<objectives [combination="combinationType"]>

(<minimize.../>
| <maximize.../>

)+
</objectives>]

[<annotations.../>]
</instance>

Syntax

19

Outline

1 Modeling with MCSP3

2 Representing Instances with XCSP3
Representing Variables
Representing Constraints
Representing Objectives

3 Structure Preserved by XCSP3

4 What about Competitions?

20

Variables

Variables

Discrete Variables

Simple Discrete Variables

Integer variables

Symbolic Variables

Complex Discrete Variables

Set variables

Graph Variables

Stochastic Discrete Variables

Continuous Variables

Real Variables

Qualitative Variables

Arrays of Variables 21

Integer Variables

<var id="identifier" [type="integer"]>
((intVal | intIntvl) wspace)*

</var>

Syntax

<var id="foo"> 0 1 2 3 4 5 6 </var >
<var id="bar"> 0..6 </var >
<var id="qux"> -6..-2 0 1..3 4 7 8..11 </var >

<var id="b1"> 0 1 </var >
<var id="b2"> 0 1 </var >

<var id="x"> 0..+ infinity </var >
<var id="y"> -infinity ..+ infinity </var >

Example

22

Symbolic Variables

<var id="identifier" type="symbolic">
(symbol wspace)*

</var>

Syntax

<var id="trafficLight" type="symbolic">
green orange red

</var >

<var id="person" type="symbolic">
tom oliver paul john

</var >

Example

23

Real Variables

<var id="identifier" type="real">
(realIntvl wspace)*

</var>

Syntax

<var id="w" type="real"> [0,+ infinity[</var >
<var id="x" type="real"> [-4,4] </var >
<var id="y" type="real"> [2/3 ,8.355] [10 ,12.8] </var >

Example

24

Set Variables

A set domain is approximated by a set interval specified by its upper and
lower bounds (subset-bound representation).

<var id="identifier" type="set">
[<required> ((intVal | intIntvl) wspace)* </required>
<possible> ((intVal | intIntvl) wspace)* </possible>]

</var>

Syntax

For a set variable s of domain [{1, 5}, {1, 3, 5, 6}], we have:

<var id="s" type="set">
<required > 1 5 </required >
<possible > 3 6 </possible >

</var >

Example

Remark
It is possible to define symbolic set variables too.

25

Arrays of Variables

Interestingly, XCSP3 allows us to declare k-dimensional arrays of
variables, with k ≥ 1.

<array id="identifier" [type="varType"] size="dimensions">
...

</array>

Syntax

<array id="x" size="[10]"> 1..100 </array >
<array id="y" size="[5][8]"> 2 4 6 8 10 </array >
<array id="z" size="[4][4][2]"> 0 1 </array >

<array id="t" size="[12]" type="symbolic set">
<required > a b </required >
<possible > c d </possible >

</array >

Example

26

Outline

1 Modeling with MCSP3

2 Representing Instances with XCSP3
Representing Variables
Representing Constraints
Representing Objectives

3 Structure Preserved by XCSP3

4 What about Competitions?

27

Constraints

Constraints over Simple Discrete Variables

Constraints over Integer Variables

Constraints over Symbolic Variables

Constraints over Complex Discrete Variables

Constraints over Set Variables

Constraints over Graph Variables

Constraints over Continuous Variables

Constraints over Real Variables

Constraints over Qualitative Variables

28

Popular constraints: XCSP3-core
Constraints over Integer Variables

Generic Constraints

intension, extension

Language-based Constraints

regular, mdd

Comparison-based Constraints

allDifferent, allEqual

ordered, lex

Counting and Summing Constraints

sum (linear)

count (capturing atLeast, atMost,exactly, among)

nValues, cardinality

Connection Constraints

minimum, maximum

element, channel

Packing and Scheduling Constraints

noOverlap (capturing disjunctive and diffn)

cumulative
29

Popular constraints: XCSP3-core

Constraints over Integer Variables

Graph Constraints

circuit

Elementary Constraints

clause, instantiation

Meta-Constraints

slide

Note that XCSP3-core is;

• sufficient for modeling many problems

• used in the 2017 XCSP3 Solver Competititon

30

Popular constraints: XCSP3-core

Constraints over Integer Variables

Graph Constraints

circuit

Elementary Constraints

clause, instantiation

Meta-Constraints

slide

Note that XCSP3-core is;

• sufficient for modeling many problems

• used in the 2017 XCSP3 Solver Competititon

30

Constraint intension

<intension> booleanExpression </intension> // Simplified Form

Syntax

The constraints
c1 : x + y = z
c2 : w ≥ z

are represented by:

<intension id="c1"> eq(add(x,y),z) </intension >
<intension id="c2"> ge(w,z) </intension >

Example

31

Constraint extension

For positive table constraints, we have:

<extension>
<list> ... </list>
<supports> ... </supports>

</extension>

Syntax

For negative table constraints, we have:

<extension>
<list> ... </list>
<conflicts> ... </conflicts>

</extension>

Syntax

Remark
The syntax is precisely given in the document introducing XCSP3
specifications.

32

Constraint extension

The constraints

(x1, x2, x3) ∈ {(0, 1, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1)}
(y1, y2, y3, y4) /∈ {(1, 2, 3, 4), (3, 1, 3, 4)}

are respectively represented by:

<extension >
<list > x1 x2 x3 </list >
<supports > (0,1,0)(1,0,0)(1,1,0)(1,1,1) </supports >

</extension >

<extension >
<list > y1 y2 y3 y4 </list >
<conflicts > (1,2,3,4)(3,1,3,4) </conflicts >

</extension >

Example

33

Constraint allDifferent

<allDifferent>
<list> ... </list>
[<except> ... </except>]

</allDifferent>

Syntax

Tags of <list> are optional if <list> is the unique parameter of the
constraint.

<allDifferent >
x1 x2 x3 x4 x5

</allDifferent >
<allDifferent >

<list > y[] </list >
<except > 0 </except >

</allDifferent >

Example

34

Constraint sum (linear)

<sum>
<list> ... </list>
[<coeffs> ... </coeffs>]
<condition> ... </condition>

</sum>

Syntax

sum(X ,C , (�, k)), with X = 〈x1, x2, . . . 〉, and C = 〈c1, c2, . . . 〉, iff

(
∑|X|

i=1 ci × x i)� k

Semantics

The linear function x1 × 1 + x2 × 2 + x3 × 3 > y is expressed as:

<sum >
<list > x1 x2 x3 </list >
<coeffs > 1 2 3 </coeffs >
<condition > (gt ,y) </condition >

</sum >

Example

35

Outline

1 Modeling with MCSP3

2 Representing Instances with XCSP3
Representing Variables
Representing Constraints
Representing Objectives

3 Structure Preserved by XCSP3

4 What about Competitions?

36

Dealing with Optimization

The syntax for dealing with optimization is:

<objectives [combination="combinationType"]>
(<minimize.../> | <maximize.../>)+

</objectives>

Syntax

When there are several objectives, the element <objectives> has an
attribute combination, whose role is illustrated in the two next slides.

37

Objectives in Functional Form

<minimize>
funtionalExpression

</minimize>

<maximize>
funtionalExpression

</maximize>

Syntax

<objectives combination="lexico">
<minimize > z </minimize >
<maximize > add(x,mul(y,2)) </maximize >

</objectives >

Example

38

Outline

1 Modeling with MCSP3

2 Representing Instances with XCSP3
Representing Variables
Representing Constraints
Representing Objectives

3 Structure Preserved by XCSP3

4 What about Competitions?

39

Advanced Forms in XCSP3

Many forms of constraints:

• Constraints lifted to lists, sets, and multisets

• Restricted constraints

• Soft constraints

• Weighted constraints (cost functions)

• Sliding constraints (slide seqbin)

• meta-constraints (and, or and not)

This allows us to represent problem instances in a rather high-level
representation. This participates to keeping structure.

40

Structure of Problems/Models

Some XCSP3 constructions allow us to preserve the structure of
problems/models:

• arrays of variables (already introduced)

• groups of constraints

• blocks of constraints

• meta-constraints

• classes (tags)

41

Groups of Constraints

Useful for posting together constraints of similar syntax.

<group [id="identifier"]>
<constraint.../> // constraint template
(<args> ... </args>)2+

</group>

Syntax

<group >
<extension >

<list > %0 %1 </list >
<supports > (1,2)(2,1)(2,3)(3,1)(3,2) </supports >

</extension >
<args > w x </args >
<args > x y </args >
<args > y z </args >

</group >

Example

42

Blocks of Constraints

Useful for linking constraints semantically.

<block [class="(identifier wspace)+"]>
(<constraint.../> | <metaConstraint.../> | <group.../>)+

</block>

Syntax

<constraints >
<block class="clues">

<intension > ... </intension >
<intension > ... </intension >
...

</block >
<block class="symmetryBreaking">

<lex > ... </lex >
<lex > ... </lex >
...

</block >
<block note="Management of first week"> ... </block >
<block note="Management of second week"> ... </block >

</constraints >

Example

43

Back to Modeling

Basically, modeling a problem consists in:

• identifying arrays of variables

• identifying groups of constraints

With XCSP3, we can keep such structure.

This was illustrated before with one example. Let us dot it now with
sports scheduling:

• first, a model MCSP3

• second, an XCSP3 instance for nTeams=4.

44

Sports Tournament Scheduling (CSPLib 026)

The problem is to schedule a tournament of n teams over n − 1 weeks,
with each week divided into n/2 periods, and each period divided into
two slots. The first team in each slot plays at home, whilst the second
plays the first team away. A tournament must satisfy the following three
constraints:

• every team plays once a week;
• every team plays at most twice in the same period over the

tournament;
• every team plays every other team.

45

Sports Tournament Scheduling (CSPLib 026)

An example schedule for 8 teams is:

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

1 - 2 2 - 4 1 - 4 2 - 8 1 - 6 2 - 5 1 - 8
4 - 7 3 - 1 3 - 5 4 - 6 3 - 2 4 - 3 3 - 6
6 - 5 5 - 8 6 - 2 5 - 1 5 - 7 6 - 8 5 - 4
8 - 3 7 - 6 8 - 7 7 - 3 8 - 4 7 - 1 7 - 2

46

MCSP3 Model (SportsScheduling)

class SportsScheduling implements ProblemAPI {
int nTeams;

public void model() {
// Here, some statements for defining nP(eriods), nW(eeks)...
Var [][] h = array("h", size(nP, nW), dom(range(nTeams)),

"h[p][w] is the number of the home opponent");
Var [][] a = array("a", size(nP, nW), dom(range(nTeams)),

"a[p][w] is the number of the away opponent");
Var [][] m = array("m", size(nP, nW), dom(range(nPM)),

"m[p][w] is the number of the match");

forall(range(nP).range(nW), (p, w) ->
extension(vars(h[p][w], a[p][w], m[p][w]), numbers))

.note("Linking variables through ternary table constraints");

allDifferent(m).note("All matches are different");

forall(range(nW), w ->
allDifferent(vars(columnOf(h, w), columnOf(a, w))))

.note("Each week , all teams are different");

forall(range(nP), p ->
cardinality(vars(h[p], a[p]), vals(range(nTeams)),

occursEachBetween (1, 2)))
.note("Each team plays at most two times in each period");

block (() -> { ... }).tag(SYMMETRY_BREAKING);
}

47

XCSP3 Instance (SportsScheduling-4)

<instance format="XCSP3" type="CSP">
<variables >

<array id="h" note="h[p][w] the number of the home opponent"
size="[2][3]"> 0..3 </array >

<array id="a" note="a[p][w] the number of the away opponent"
size="[2][3]"> 0..3 </array >

<array id="m" note="m[p][w] is the number of the match" size="
[2][3]"> 0..5 </array >

</variables >
<constraints >

<group note="Linking variables through table constraints">
<extension >

<list > %0 %1 %2 </list >
<supports > (0,1,0)(0,2,1)...(1 ,3 ,4)(2,3,5) </supports >

</extension >
<args > h[0][0] a[0][0] m[0][0] </args >
<args > h[0][1] a[0][1] m[0][1] </args >
<args > h[0][2] a[0][2] m[0][2] </args >
<args > h[1][0] a[1][0] m[1][0] </args >
<args > h[1][1] a[1][1] m[1][1] </args >
<args > h[1][2] a[1][2] m[1][2] </args >

</group >
<allDifferent note="All matches are different">

m[][]
</allDifferent >
...

48

XCSP3 Instance (SportsScheduling-4)

...
<group note="Each week , all teams are different">

<allDifferent > %... </allDifferent >
<args > h[][0] a[][0] </args >
<args > h[][1] a[][1] </args >
<args > h[][2] a[][2] </args >

</group >
<group note="Each team plays at most two times in each per.">

<cardinality >
<list > %... </list >
<values > 0 1 2 3 </values >
<occurs > 1..2 1..2 1..2 1..2 </occurs >

</cardinality >
<args > h[0][] a[0][] </args >
<args > h[1][] a[1][] </args >

</group >
<block class="symmetryBreaking">

...
</block >

</constraints >
</instance >

49

Outline

1 Modeling with MCSP3

2 Representing Instances with XCSP3
Representing Variables
Representing Constraints
Representing Objectives

3 Structure Preserved by XCSP3

4 What about Competitions?

50

Two Important Things

For competitions, I think that it is very important to

1 help users with useful tools (parsers, checkers, . . .),

2 do not sacrifice structure when “flattening” models into instances.

51

XCSP3: Available Tools and Benchmarks

Many tools are available on github:

https: // github. com/ xcsp3team/ .

Parsers available on github:

• Java 8 Parser

• C++ 11 Parser

Various tools for:

• checking solutions and bounds: org.xcsp.checker.SolutionChecker

• checking the validity of an instance for a competition track:
org.xcsp.checker.CompetitionChecker

• checking the validity of an XCSP3 instance (made available soon)

Many series of CSP/COP instances that can be downloaded from
www.xcsp.org by means of our selection engine!

52

https://github.com/xcsp3team/
www.xcsp.org

XCSP3 Competition 2018

Which directions for new features?

• Constraints
• short tables, with *
• constraint circuit
• constraint allDifferent-List
• . . .

• Annotations

• decision variables
• search heuristics

• Use of classes
• new XParser(fileName,”symmetryBreaking”); // elements with this

tag are discarded
• new XParser(fileName)

• . . .

53

	Modeling with MCSP3
	Representing Instances with XCSP3
	Representing Variables
	Representing Constraints
	Representing Objectives

	Structure Preserved by XCSP3
	What about Competitions?

