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Note:
Equivalent to 0-1 integer linear programming constraint

PB formula: conjunction of PB constraints
PB solvers decide satisfiability of PB formula
PB formula can be rationally infeasible

no assignment to interval [0,1] satisfies the formula, e.g.: 
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A clause is a special PB constraint: 
 
 
CNF formula can be rationally infeasible

But only if unit propagation leads to conflict
Otherwise, trivial rational solution: assign 0.5 to all non-
propagated variables

All clauses not satisfied by unit propagation have at least 2
unassigned literals
Such clauses are satisfied by 0.5-assignment

For CNF, deciding rational infeasibility is trivial

x +  +y z + ≥w 1
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Pseudo-Boolean backgroundPseudo-Boolean background
Deciding rational infeasibility of PB formulas is easy in theory:

Algorithmic complexity class: P [K1979]
Proof-theoretic complexity: short cutting plane [CCT87] proofs
exist [F1902]

Linear programming (LP) solvers efficiently decide rational
feasibility
In practice, many PB solvers struggle on rationally infeasible
formulas [EGNV18]

Even PB solvers that natively build cutting plane proofs, e.g., 
RoundingSat and Sat4J

Goal of our work: 
use LP solver to check rational feasibility during PB search
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PB search loopPB search loop
with LP solver call

Propagation Conflict?

Backjump

Decide unassigned
variable

no
Rational infeasibility?

Query LP solver

yes
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multipliersyes
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constraint 



LP solvers are slow compared to PB search loop
Limit calls to LP solver
Limit LP solver running time
Deterministic measure: compare #conflicts in PB
solver to #pivots in LP solver

Two technical hurdlesTwo technical hurdles
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LP solvers are slow compared to PB search loop
Limit calls to LP solver
Limit LP solver running time
Deterministic measure: compare #conflicts in PB
solver to #pivots in LP solver

Learned constraint must be implied by input formula
LP solver uses inexact floating point arithmetic
Recalculate Farkas constraint with exact arithmetic
Verify Farkas constraint is still conflicting

Two technical hurdlesTwo technical hurdles
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PB solver RoundingSat [EN18]
Native cutting plane proofs
Performed well in past PB competitions

LP solver SoPlex [ZIB]
SCIP's native LP solver
Fast
Open source

Working implementationWorking implementation
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Experiments!Experiments!

5 solver configurations
RoundingSat
RoundingSat+SoPlex
SCIP
Sat4J
Sat4J-CP

3000s on 16GiB machines
4 benchmark families:

PB12
PB16
MIPLIB
PROOF
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RoundingSat+SoPlex never really worse than RoundingSat
small LP overhead at worst, huge speedups at best
Not only more solved UNSAT instances (+16%), but also more
solved SAT instances (+14%)

RoundingSat+SoPlex and SCIP trade places
SoPlex does not like PB12

Performance experimentPerformance experiment
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Conflict depth experimentConflict depth experiment

Conflict depth for rational infeasibility
check and unit propagation are similar
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Conflict depth experimentConflict depth experiment

Conflict depth for rational infeasibility
check and unit propagation are similar
Technique detects rational infeasibility
also in deep search nodes
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Learned constraint addition experimentLearned constraint addition experiment

Adding learned constraints to LP solver does not lead to more
solved instances

Also no improvement in number of conflicts needed
Hypothesis 1: no objective function to guide "tight" variant
Hypothesis 2: rational solution at deep search nodes is not useful
Other hypotheses?

19



ConclusionConclusion
Use LP solver to tackle rational infeasibility during search
Implemented sound integration of LP solver in PB solver
Experiments indicate small LP overhead at worst, huge
speedups at best
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ConclusionConclusion
Use LP solver to tackle rational infeasibility during search
Implemented sound integration of LP solver in PB solver
Experiments indicate small LP overhead at worst, huge
speedups at best

Thanks for your attention!Thanks for your attention!
Questions?Questions?

FutureFuture Current work Current work
Optimization
LP cut generation
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