
LeveragingLeveraging
Linear Programming forLinear Programming for
pseudo-Boolean solvingpseudo-Boolean solving

Jo Devriendt †, Jan Elffers †, Ambros Gleixner ‡, Jakob Nordström *
† KTH Royal Institute of Technology, Sweden

‡ Zuse Institut Berlin, Germany
* University of Copenhagen, Denmark

jhmde@kth.se 1

Pseudo-Boolean backgroundPseudo-Boolean background
Pseudo-Boolean (PB) constraint:

Bounded weighted sum of literals:

Note:
Equivalent to 0-1 integer linear programming constraint

x + 2 +y 3z + 4 ≥w 5
=x 1 − x

2

Pseudo-Boolean backgroundPseudo-Boolean background
Pseudo-Boolean (PB) constraint:

Bounded weighted sum of literals:

Note:
Equivalent to 0-1 integer linear programming constraint

PB formula: conjunction of PB constraints

x + 2 +y 3z + 4 ≥w 5
=x 1 − x

2

Pseudo-Boolean backgroundPseudo-Boolean background
Pseudo-Boolean (PB) constraint:

Bounded weighted sum of literals:

Note:
Equivalent to 0-1 integer linear programming constraint

PB formula: conjunction of PB constraints
PB solvers decide satisfiability of PB formula

x + 2 +y 3z + 4 ≥w 5
=x 1 − x

2

Pseudo-Boolean backgroundPseudo-Boolean background
Pseudo-Boolean (PB) constraint:

Bounded weighted sum of literals:

Note:
Equivalent to 0-1 integer linear programming constraint

PB formula: conjunction of PB constraints
PB solvers decide satisfiability of PB formula
PB formula can be rationally infeasible

no assignment to interval [0,1] satisfies the formula, e.g.:

x + y + z ≥ 2
+x +y ≥z 2

x + 2 +y 3z + 4 ≥w 5
=x 1 − x

2

Pseudo-Boolean backgroundPseudo-Boolean background
Pseudo-Boolean (PB) constraint:

Bounded weighted sum of literals:

Note:
Equivalent to 0-1 integer linear programming constraint

PB formula: conjunction of PB constraints
PB solvers decide satisfiability of PB formula
PB formula can be rationally infeasible

no assignment to interval [0,1] satisfies the formula, e.g.:

Rationally infeasible implies UNSAT

x + y + z ≥ 2
+x +y ≥z 2

x + 2 +y 3z + 4 ≥w 5
=x 1 − x

2

SAT backgroundSAT background

A clause is a special PB constraint:

 x + +y z + ≥w 1

3

SAT backgroundSAT background

A clause is a special PB constraint:

CNF formula can be rationally infeasible

But only if unit propagation leads to conflict

x + +y z + ≥w 1

3

SAT backgroundSAT background

A clause is a special PB constraint:

CNF formula can be rationally infeasible

But only if unit propagation leads to conflict
Otherwise, trivial rational solution: assign 0.5 to all non-
propagated variables

All clauses not satisfied by unit propagation have at least 2
unassigned literals
Such clauses are satisfied by 0.5-assignment

x + +y z + ≥w 1

3

SAT backgroundSAT background

A clause is a special PB constraint:

CNF formula can be rationally infeasible

But only if unit propagation leads to conflict
Otherwise, trivial rational solution: assign 0.5 to all non-
propagated variables

All clauses not satisfied by unit propagation have at least 2
unassigned literals
Such clauses are satisfied by 0.5-assignment

For CNF, deciding rational infeasibility is trivial

x + +y z + ≥w 1

3

Pseudo-Boolean backgroundPseudo-Boolean background
Deciding rational infeasibility of PB formulas is easy in theory:

Algorithmic complexity class: P [K1979]
Proof-theoretic complexity: short cutting plane [CCT87] proofs
exist [F1902]

4

Pseudo-Boolean backgroundPseudo-Boolean background
Deciding rational infeasibility of PB formulas is easy in theory:

Algorithmic complexity class: P [K1979]
Proof-theoretic complexity: short cutting plane [CCT87] proofs
exist [F1902]

Linear programming (LP) solvers efficiently decide rational
feasibility

4

Pseudo-Boolean backgroundPseudo-Boolean background
Deciding rational infeasibility of PB formulas is easy in theory:

Algorithmic complexity class: P [K1979]
Proof-theoretic complexity: short cutting plane [CCT87] proofs
exist [F1902]

Linear programming (LP) solvers efficiently decide rational
feasibility
In practice, many PB solvers struggle on rationally infeasible
formulas [EGNV18]

Even PB solvers that natively build cutting plane proofs, e.g.,
RoundingSat and Sat4J

4

Pseudo-Boolean backgroundPseudo-Boolean background
Deciding rational infeasibility of PB formulas is easy in theory:

Algorithmic complexity class: P [K1979]
Proof-theoretic complexity: short cutting plane [CCT87] proofs
exist [F1902]

Linear programming (LP) solvers efficiently decide rational
feasibility
In practice, many PB solvers struggle on rationally infeasible
formulas [EGNV18]

Even PB solvers that natively build cutting plane proofs, e.g.,
RoundingSat and Sat4J

Goal of our work:
use LP solver to check rational feasibility during PB search

4

Linear Programming (LP) solverLinear Programming (LP) solver
Input:

conjunction of linear constraints
variable bounds
objective function

5

Linear Programming (LP) solverLinear Programming (LP) solver
Input:

conjunction of linear constraints
variable bounds
objective function

Output: either
SAT: optimal rational solution
UNSAT: Farkas multipliers

defines violated positive linear
combination of input
constraints

5

Linear Programming (LP) solverLinear Programming (LP) solver
Input:

conjunction of linear constraints
variable bounds
objective function

Output: either
SAT: optimal rational solution
UNSAT: Farkas multipliers

defines violated positive linear
combination of input
constraints

5

PB search loopPB search loop

Propagation

6

PB search loopPB search loop

Propagation Conflict?

6

PB search loopPB search loop

Propagation Conflict?

Decide unassigned
variable

6

no

PB search loopPB search loop

Propagation Conflict?

Learn PB constraint

Decide unassigned
variable

6

yes

no

PB search loopPB search loop

Propagation Conflict?

Learn PB constraint

Backjump

Decide unassigned
variable

6

yes

no

PB search loopPB search loop
with LP solver call

Propagation Conflict?

Backjump

Decide unassigned
variable

Rational infeasibility?

Query LP solver

yes

7

no

Learn PB constraint

PB search loopPB search loop
with LP solver call

Propagation Conflict?

Backjump

Decide unassigned
variable

no
Rational infeasibility?

Query LP solver

yes

7

no

Learn PB constraint

PB search loopPB search loop
with LP solver call

Propagation Conflict?

Backjump

Decide unassigned
variable

no
Rational infeasibility?

Query LP solver

yes

7

no

Learn PB constraint

Extract Farkas
multipliersyes

Learn Farkas
constraint

LP solvers are slow compared to PB search loop
Limit calls to LP solver
Limit LP solver running time
Deterministic measure: compare #conflicts in PB
solver to #pivots in LP solver

Two technical hurdlesTwo technical hurdles

8

LP solvers are slow compared to PB search loop
Limit calls to LP solver
Limit LP solver running time
Deterministic measure: compare #conflicts in PB
solver to #pivots in LP solver

Learned constraint must be implied by input formula
LP solver uses inexact floating point arithmetic
Recalculate Farkas constraint with exact arithmetic
Verify Farkas constraint is still conflicting

Two technical hurdlesTwo technical hurdles

8

PB solver RoundingSat [EN18]
Native cutting plane proofs
Performed well in past PB competitions

LP solver SoPlex [ZIB]
SCIP's native LP solver
Fast
Open source

Working implementationWorking implementation

9

Experiments!Experiments!

5 solver configurations
RoundingSat
RoundingSat+SoPlex
SCIP
Sat4J
Sat4J-CP

3000s on 16GiB machines
4 benchmark families:

PB12
PB16
MIPLIB
PROOF

10

10− 2 10− 1 100 101 102 103

Timeout lim it (s)

0

100

200

300

400

500

600

700
N
um

be
r
of
 s
ol
ve

d
in
st
an

ce
s

PB16

RoundingSat
RoundingSat+ SoPlex
SCIP
Sat4J
Sat4J­CP

Performance experimentPerformance experiment

11

10− 2 10− 1 100 101 102 103

Timeout lim it (s)

0

100

200

300

400

500

600

700
N
um

be
r
of
 s
ol
ve

d
in
st
an

ce
s

PB16

RoundingSat
RoundingSat+ SoPlex
SCIP
Sat4J
Sat4J­CP

Performance experimentPerformance experiment

11

Performance experimentPerformance experiment

10− 2 10− 1 100 101 102 103

Timeout lim it (s)

0

20

40

60

80

100

120

N
um

be
r
of
 s
ol
ve

d
in
st
an

ce
s

PB12

RoundingSat
RoundingSat+ SoPlex
SCIP
Sat4J
Sat4J­CP

12

10− 2 10− 1 100 101 102 103

Timeout lim it (s)

0

100

200

300

400

500
N
um

be
r
of
 s
ol
ve

d
in
st
an

ce
s

MIPLIB

RoundingSat
RoundingSat+ SoPlex
SCIP
Sat4J
Sat4J­CP

Performance experimentPerformance experiment

13

10− 2 10− 1 100 101 102 103

Timeout lim it (s)

0

200

400

600

800

1000

1200

N
um

be
r
of
 s
ol
ve

d
in
st
an

ce
s

PROOF

RoundingSat
RoundingSat+ SoPlex
SCIP
Sat4J
Sat4J­CP

Performance experimentPerformance experiment

14

RoundingSat+SoPlex never really worse than RoundingSat
small LP overhead at worst, huge speedups at best

Performance experimentPerformance experiment

15

RoundingSat+SoPlex never really worse than RoundingSat
small LP overhead at worst, huge speedups at best
Not only more solved UNSAT instances (+16%), but also more
solved SAT instances (+14%)

Performance experimentPerformance experiment

15

RoundingSat+SoPlex never really worse than RoundingSat
small LP overhead at worst, huge speedups at best
Not only more solved UNSAT instances (+16%), but also more
solved SAT instances (+14%)

RoundingSat+SoPlex and SCIP trade places

Performance experimentPerformance experiment

15

RoundingSat+SoPlex never really worse than RoundingSat
small LP overhead at worst, huge speedups at best
Not only more solved UNSAT instances (+16%), but also more
solved SAT instances (+14%)

RoundingSat+SoPlex and SCIP trade places
SoPlex does not like PB12

Performance experimentPerformance experiment

15

Conflict depth experimentConflict depth experiment

16

Conflict depth experimentConflict depth experiment

Conflict depth for rational infeasibility
check and unit propagation are similar

17

Conflict depth experimentConflict depth experiment

Conflict depth for rational infeasibility
check and unit propagation are similar
Technique detects rational infeasibility
also in deep search nodes

17

Learned constraint addition experimentLearned constraint addition experiment

18

Learned constraint addition experimentLearned constraint addition experiment

Adding learned constraints to LP solver does not lead to more
solved instances

Also no improvement in number of conflicts needed

19

Learned constraint addition experimentLearned constraint addition experiment

Adding learned constraints to LP solver does not lead to more
solved instances

Also no improvement in number of conflicts needed
Hypothesis 1: no objective function to guide "tight" variant

19

Learned constraint addition experimentLearned constraint addition experiment

Adding learned constraints to LP solver does not lead to more
solved instances

Also no improvement in number of conflicts needed
Hypothesis 1: no objective function to guide "tight" variant
Hypothesis 2: rational solution at deep search nodes is not useful

19

Learned constraint addition experimentLearned constraint addition experiment

Adding learned constraints to LP solver does not lead to more
solved instances

Also no improvement in number of conflicts needed
Hypothesis 1: no objective function to guide "tight" variant
Hypothesis 2: rational solution at deep search nodes is not useful
Other hypotheses?

19

ConclusionConclusion
Use LP solver to tackle rational infeasibility during search
Implemented sound integration of LP solver in PB solver
Experiments indicate small LP overhead at worst, huge
speedups at best

20

ConclusionConclusion
Use LP solver to tackle rational infeasibility during search
Implemented sound integration of LP solver in PB solver
Experiments indicate small LP overhead at worst, huge
speedups at best

FutureFuture Current work Current work
Optimization
LP cut generation

20

ConclusionConclusion
Use LP solver to tackle rational infeasibility during search
Implemented sound integration of LP solver in PB solver
Experiments indicate small LP overhead at worst, huge
speedups at best

Thanks for your attention!Thanks for your attention!
Questions?Questions?

FutureFuture Current work Current work
Optimization
LP cut generation

20

[K1979] A polynomial algorithm for linear programming -
1979 - Khachiyan
[CCT87] On the Complexity of Cutting-Plane Proofs -
Cook, Coullard, Turán
[F1902] Über die Theorie der Einfachen Ungleichungen -
1902 - Farkas
[EGNV18] Using combinatorial benchmarks to probe the
reasoning power of pseudo-Boolean solvers - 2018 -
Elffers, Giráldez-Cru, Nordström, Vinyals
[EN18] Divide and conquer: Towards faster pseudo-
boolean solving - 2018 - Elffers, Nordström
[ZIB] SoPlex - soplex.zib.de

ReferencesReferences

21

