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Visualizing CDCL

CDCL solvers crucially use heuristics for, e.g.:
» Variable decisions.
» Clause database management.
P> Restarts.
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Visualizing CDCL

CDCL solvers crucially use heuristics for, e.g.:
» Variable decisions.
» Clause database management.
P> Restarts.

Heuristics often work very well.
Limited understanding of why.

This presentation: tool for visualizing CDCL heuristics (so far on
crafted benchmarks)
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Visualizing CDCL: decision heuristic

Classic decision heuristic: variable with highest VSIDS
score [MMZ101]

If variable v was active in conflicts t1,...,t, and T conflicts have
passed,

activity(v) = Z ol 7t

1<i<k

« decay factor 1/2 < av < 1. (default 0.95)

Phase saving [PD07]: Set variable to the polarity (phase) it was
last propagated to.
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Visualizing VSIDS scores

» Project arose out of understanding how CDCL solves tricky
combinatorial benchmarks.

» By visualizing aspects of proof search (VSIDS, phase) we try
to understand CDCL.

» Crafted benchmarks often defined in terms of graphs or
matrices.

I B B |
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Visualizing VSIDS scores

Brighter color = higher score
» Runs during CDCL execution.
» Refreshes every 100 conflicts.*
» At most 25 “frames” /second.*

*numbers can be changed
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How to implement your own visualization

Visualizer written in Qt framework.

» Before the solver starts running, a method is called to draw
shapes on the grid.
Each shape = a variable.
In this method you can draw your own visualization.

» With each new frame, a method
draw_vsids(vector<double> scores) is called.
Gives shapes colors corresponding to VSIDS scores.
Can be overridden to define custom color scheme.
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Smoothing of VSIDS animation

CDCL VSIDS scores can change quickly: becomes a blur.

» Use exponential moving average on VSIDS scores:

expAverage(v); = Y o activity(v)e_ae
At>0

set a to say 0.99.
activity(v): are VSIDS scores (= exponential averages)
themselves

» Visualizer reads VSIDS scores from solver.

» Visualize frames every 100 conflicts.
However, want average over all conflicts
Cannot read full VSIDS scores after every conflict.
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Smoothing of VSIDS animation

Our implementation: let solver maintain 2 VSIDS scores: standard
and more slowly decaying.

Mathematical guarantee:

Theorem
Exponential average with parameter dg,, over decay d VSIDS is a
linear combination of decay d VSIDS and decay dgo, VSIDS.

= slower decay factor approximates exponential moving average.
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Phase VSIDS

Similar problem with phases. Can apply same VSIDS idea. For
0 < a < 1, one can define

vsidsPhase(v); = (1 — a)phase(v): + « - vsidsPhase(v);_1

where false = —1, true = 1.
Only for visualization purposes currently.
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Integration in CDCL solver

Communication via text streams on stdin / stdout

> Add a command line parameter “interactive” to the solver.

» Add a method interactive() to the solver.
Idea:
1. read #conflicts to run

2. run solver for this many conflicts
3. output frame:

> The secondary VSIDS scores, normalized to [0, 1].
» Phases mapped to interval [-1.0,1.0] (—1 = false, 1 = true).
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Demo

1. VSIDS:
(a) Ordering principle
(b) Flow formula

2. Phase:

(a) Pebbling formula with XOR
(b) Pigeonhole principle
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Demo 1la: ordering principle

A formula with variables x; ; for each 1 <7 # j < n corresponding
to edges of a complete graph.

Super easy in theory.

Hard for CDCL if VSIDS decay factor too high (too close to 1).

Clause deletion causes VSIDS resets, not restarts.
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Demo 1b: flow formula with high distortion

Formula defined on an undirected graph.
Super easy in theory.

Variables x, , for all directed edges (u, v).
Constraints (N(u) are neighbours of vertex u):

Yu: E Xuy — Xyu =1

veN(u)

Phenomenon observed: VSIDS “freezes” on some instances.
Sample graph is 6-regular random graph on 500 nodes.
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Demo 2a: pebbling formula with XOR

A formula defined on a single-sink DAG with indegree 2.
Super easy in theory.

0°§°9

Two variables per vertex: x,1 and x,>. Constraints:
» xu1® xy2 =1 for u a source.
» Xxu1® xy2 =0 for u the sink.
» If u has predecessors v, w,
(xv1 @ xv2=1)A(Xw1PBxw2=1)) = (xp1 B xy2=1)
Visualize phase(x,) := phase(x, 1) - phase(x,2) for all vertices u.
(remember phase € {—1, 1} without phase VSIDS)
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Demo 2b: pigeonhole principle

Formula claims that n pigeons do not fit into n — 1 holes.
Variables x;j for 1 <i<n, 1<;<n—-1

We run CDCL without restarts, and with and without phase
VSIDS.
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Conclusion

What is already implemented:
» Various visualizations for studying combinatorial formulas.
» Interactive version of Minisat for use with the visualizer.
What a user could add:
» Additional visualizations.
» Interactive versions of other CDCL SAT solvers.

The software is available on Github:
github.com/elffersj/cdcl-visualizer
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github.com/elffersj/cdcl-visualizer
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