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Outline
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Prime Implicants of CNF Encoding of Random Forest Classifiers

Contributions
» Monotonic CNF encoding for random forest classifiers

Incremental method to generate all prime implicants

First initial results

Plenty of ideas for future work (paper is WIP)

Implementation for sklearn.ensemble.RandomForestClassifier
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Decision Tree Classifiers ﬂ("'

Samples Classes Ground-truth
TCR" K GCT—K

Classification Problem

Devise a prediction function ¢ : R” — K maximizing the cardinality of
correctly classified samples

Decision Tree Classifier

A decision tree D = (V, E, f, t) is a binary tree (V, E) with features
f:V—{1,2,...,n}andthresholdst: V — R
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CNF Encoding Decision Tree Classifiers
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Example sklearn.tree.DecisionTreeClassifier
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CNF Encoding Decision Tree Classifiers

Example sklearn.tree.DecisionTreeClassifier
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CNF Encoding Decision Tree Classifiers

Example sklearn.tree.DecisionTreeClassifier
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Encoding Feature Constraints ﬂ(IT

Multiple thresholds per feature

- per feature collect thresholds and sort: f{h < t; < --- < Iy

« one Boolean variable per interval (induced by thresholds)

« O(n) encoding variables and clauses, only one clause per node
 without encoding variables: quadratic growth
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Encoding Feature Constraints
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Multiple thresholds per feature

- per feature collect thresholds and sort: f{h < t; < --- < Iy

« one Boolean variable per interval (induced by thresholds)

« O(n) encoding variables and clauses, only one clause per node
 without encoding variables: quadratic growth
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Properties of the Encoding
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Observations
o 2-SAT

e Horn
« Monotonic Circuit:

» Classes are roots
» Feature Intervals are leafs

» Leafs are purely positive

» Select a class by adding a unit-clause of the class variable, or select
multiple classes by adding a disjunction of class variables
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Random Forest Classifiers ﬂ("'

Samples Classes Ground-truth
TCR" K GCT—K

Classification Problem

Devise a prediction function ¢ : R” — K maximizing the cardinality of
correctly classified samples

Random Forest Classifier

A random forest RY = {(T;, D;) | 1 < i < d} combines a set of d
decision trees. Each decision tree D; is independently trained on
randomly selected subsets of the training samples T, C T
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CNF Encoding Random Forest Classifiers

Example sklearn.ensemble.RandomForestClassifier

+ each leaf ¢ has class probabilities p,(easy), p,(medium), p,(hard)

« each sample belongs to exactly one leaf in each of the trees

 classis determined by  argmax Y py(k)
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Encoding an Auxiliary SAT Instance
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Number of leaf combinations exponential in number of trees, but not all
leaf combinations are possible.

Generate possible leaf combinations

« Encoding all decision trees as described

» For each feature f add constraint: —fvg V —fvy V- - -V = fy,

« Generate all solutions, projected to leaf variables

<ty <t <ln
) ] B
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Final Encoding of Random Forest Classifiers AT

« Encoding all decision trees as described

+ Determine class k(M) € K for each model M of the auxiliary SAT
instance (each solution is a possible leaf combination)

. Sci={M| k(M) =k}

Monolithic Approach

Foreachclass k € K,encode k - \V A m
MeS, meM

Incremental Approach

Incrementally build formula equisatisfiableto k — \/ A m
MeSy meM

» add models in Sk one by one and solve
» needs additional encoding variables and use of an assumption literal

v
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Determine all Prime Implicants of Classifier ﬂ(“'

Given a formula F, a model P |= F is a prime implicant of F iff it is subset
minimal, i.e., P’ C P, P’ |= F.

Prime Implicants of our Random Forest Encoding

« Minimal number of excluded value intervals for selected class(es)

« NOT minimal number of case-distinctions for selected class(es)
 Largest connected feature subspaces for selected class(es)
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Results: Decision Tree (SC 2020 Data) AT
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Predict fastest solver in {kissat-unsat, relaxed-newtech} from 56 features,
Accuracy: 79%

Numbers of Case Distinctions: Leaf Depths vs. Prime Implicants

kissat_unsat relaxed_newtech
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Results: Random Forest, 2 Trees (SC 2020 Data) [T
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Predict fastest solver in {kissat-unsat, relaxed-newtech} from 56 features,
Accuracy: 74%

Prime Implicant: Numbers of Samples (left) Sizes (right)

40
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Numbers of Samples
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Number of Samples per Prime Implicant Sizes of Prime Implicants
— kissat_unsat 201 — Kissat_unsat
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Numbers of Case Distinctions
e
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Leaf Comb. Possible Comb. Pl computation

1554 1118 2 seconds
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Results: Random Forest, 3 Trees (SC 2020 Data) AT
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Accuracy: 79%

Numbers of Samples

Number of Samples per Prime Implicant Sizes of Prime Implicants
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Prime Implicant Prime Implicant

Leaf Comb. Possible Comb. Pl computation code version
77700 40047 9518 seconds original
50 seconds C++
5 seconds incremental
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Future Work
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Parallelize and Approximate

« Parallel and incremental enumeration of possible leaf combinations

« Determine leaf combinations which are backed by samples

« Analyze evolution of prime implicants while adding leaf combinations
« Analyze evolution of accuracy through generalization

Empirical Classes of SAT Instances

 Analyze prediction models for algorithm portfolios
» Feedback for algorithm engineers
» Recurrent ISAC-like approach without unsupervised learning
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