Approximate-At-Most-k Encoding of SAT for Soft Constraints

Shunji Nishimura

National Institute of Technology, Oita College, Japan

PoS2023

At-most-k constraints and encodings

- the number of true values $\leqq k$
- problem: Boolean expressions will explode
- proposed encodings in the past: binary, sequential counter, commander, product, etc..

At-most-k constraints and encodings

- the number of true values $\leqq \mathrm{k}$
- problem: Boolean expressions will explode
- proposed encodings in the past: binary, sequential counter, commander, product, etc.. are absolutely at-most-k
here is approximately at-most-k

At-most-k constraints and encodings

- the number of true values $\leqq \mathrm{k}$
- problem: Boolean expressions will explode
- proposed encodings in the past: binary, sequential counter, commander, product, etc..

Conventional vs Approximate

	solution coverage	purposes
conventional	complete	hard and soft constraints
approximate	incomplete	only soft constraints

- hard constraints: necessities
- solt constraints: to describe optional desires

Conventional vs Approximate

	solution coverage	purposes
conventional	complete	hard and soft constraints
approximate	incomplete	only soft constraints

but drastically
reduces

- hard constraints: necessities
- soft constraints: to describe optional desires

Soft constraints

Not necessary but preferred

- In common with optimization problems
- Example: university timetabling
$>$ minimize empty time slots in between
$>$ minimize the number of teachers who have continuous classes
$>$ it is preferable a subject is always taught in the same room

Fundamental idea

00000000

Fundamental idea

Appr oxi mat e- At - Mb

- again, is not a real at-most-k
- should use for only soft constraints

2×2 models

- two parents and four children
- define recursively

2×2 models

h x w models

- height h and width w

h x w models

h x w models

Literal number comparison (2×2 models)

Literal number comparison (2×2 models)

Coverages (2×2 models)

= (solutions by approximate) / (all solutions)

--solution coverage

Coverages (2×2 models)

Coverages (2x2 models)

Coverages and efficiencies (2×2 models)

efficiency = coveraage /literà r.ate

h x w models: adjustment

want to generate arbitrary k of n

8 of 16

Target variables
OOOOOOOO
OOOOOOO

h x w models: adjustment

8 of 16

h x w models: adjustment

8 of 16

4 of 10

h x w models: example1

to generate 5 of 10
approximate-at-most6 of 12

h x w models: example1

to generate 5 of 10

h x w models: example2

to generate 5 of 10

The best efficiencies

—of 10 - of 20 - of 30

The best efficiencies

$$
\text { - of } 10<\text { of } 20<\text { of } 30
$$

Low efficiency between highs

Low efficiency between highs

24 of 30 : high efficiency

fix 2 falses and 0 trues
(24 of $32 \rightarrow 24$ of 30)

26 of 30 :
high efficiency
fix 1 false and 5 trues
(30 of $36 \rightarrow 25$ of 30)

25 of 30 :
 low efficiency

fix 0 falses and 2 trues (28 of $32 \rightarrow 26$ of 30)

Discussion1: coverage definition

all solutions
u
at-most-8
U
at-most-7
u
$:$
U
at-most-1
U
no trues

Discussion1: coverage definition

Discussion1: coverage definition

Discussion2: probability of finding solutions

When approximate-at-most-k covers 50% of the possible solutions, every single solution has probability 50% to be found.

Discussion2: probability of finding solutions

When approximate-at-most-k covers 50% of the possible solutions, every single solution has probability 50% to be found.

For a real-life problem ..

- has 1 solution $\rightarrow 50 \%$ to find
- has 2 solutions $\rightarrow 75 \%$ to find (whichever)
- has 10 solutions $\rightarrow 99.9 \%$ to find (whichever) :

Discussion2: probability of finding solutions

When approximate-at-most-k covers 50% of the possible solutions, every single solution has probability 50% to be found.

For a real-life problem ..

- has 1 solution $\rightarrow 50 \%$ to find
- has 2 solutions $\rightarrow 75 \%$ to find (whichever)
- has 10 solutions $\rightarrow 99.9 \%$ to find (whichever)

Conclusion

- at-most-k constraints are recursively applied (with multiplying)
- less Boolean expressions needed than conventional encodings, but does not cover all solutions
- available for searching better solutions under soft constraints
- Ex. at-most-16 of 32
$>$ only 15% of literal number (vs sequential counter)
> covers 44% of the solution space

