Approximate-At-Most-k Encoding of SAT for Soft Constraints

Shunji Nishimura

National Institute of Technology, Oita College, Japan

PoS2023

At-most-k constraints and encodings

- the number of true values $\leq k$
- problem: Boolean expressions will explode
- proposed encodings in the past:

binary, sequential counter, commander, product, etc..

At-most-k constraints and encodings

- the number of true values $\leq k$
- problem: Boolean expressions will explode
- proposed encodings in the past:

binary, sequential counter, commander, product, etc..

are **absolutely** at-most-k

here is approximately at-most-k

At-most-k constraints and encodings

- the number of true values $\leq k$
- problem: Boolean expressions will explode
- proposed encodings in the past:

binary, sequential counter, commander, product, etc..

Conventional vs Approximate

	solution coverage	purposes
conventional	complete	hard and soft constraints
approximate	incomplete	only soft constraints

- hard constraints: necessities
- solt constraints: to describe optional desires

Conventional vs Approximate

	solution coverage	purposes
conventional	complete	hard and soft constraints
approximate	incomplete	only soft constraints

- hard constraints: necessities
- soft constraints: to describe optional desires

Soft constraints

Not necessary but preferred

- In common with optimization problems
- Example: university timetabling
 - minimize empty time slots in between
 - \succ minimize the number of teachers who have continuous classes
 - \succ it is preferable a subject is always taught in the same room

Fundamental idea at most 2 of $0 \text{ trues} \Rightarrow \text{ at most } 0$ 2 times A₁ \land 1 true \Rightarrow at most 2 at most \land 2 true \Rightarrow at most 4 B₁ B

Approximate-At-Mo

- again, is not a real at-most-k
- should use for only soft constraints

2x2 models

- two parents and four children
- define recursively

2x2 models

h x w models

• height h and width w

h x w models

Literal number comparison (2x2 models)

24

Coverages (2x2 models)

Coverages and efficiencies (2x2 models)

h x w models: adjustment

want to generate arbitrary k of n

8 of 16

Target variables

 $\begin{array}{c}
00000000\\
0000000
\end{array}$

h x w models: adjustment

8 of 16

h x w models: adjustment

h x w models: example1

to generate 5 of 10

h x w models: example1

to generate 5 of 10

h x w models: example2

to generate 5 of 10

The best efficiencies

The best efficiencies

approximate-at-most-

Low efficiency between highs

24 of 30 : high efficiency

25 of 30 :

26 of 30 : high efficiency

Low efficiency between highs

Discussion1: coverage definition

all solutions

∪ at-most-8

U

at-most-7

U

•

∪ at-most-1

Discussion2: probability of finding solutions

When approximate-at-most-k covers 50% of the possible solutions, every single solution has probability 50% to be found.

Discussion2: probability of finding solutions

When approximate-at-most-k covers 50% of the possible solutions, every single solution has probability 50% to be found.

For a real-life problem ..

- has 1 solution \rightarrow 50% to find
- has 2 solutions \rightarrow 75% to find (whichever) :
- has 10 solutions → 99.9% to find (whichever)
 :

Discussion2: probability of finding solutions

When approximate-at-most-k covers 50% of the possible solutions, every single solution has probability 50% to be found.

For a real-life problem ..

- has 1 solution \rightarrow 50% to find
- has 2 solutions → 75% to find (whichever)
- has 10 solutions \rightarrow 99.9% to find (whichever)

coverage ≠ finding

...probability.....

Conclusion

- at-most-k constraints are recursively applied (with multiplying)
- less Boolean expressions needed than conventional encodings, but does not cover all solutions
- available for searching better solutions under soft constraints
- Ex. at-most-16 of 32
 - > only 15% of literal number (vs sequential counter)
 - \succ covers 44% of the solution space