Improving Conflict Analysis in MIP Solvers by Pseudo-Boolean Reasoning

Gioni Mexi Timo Berthold Ambros Gleixner Jakob Nordström

ZIB)

14th Pragmatics of SAT International Workshop July 4, 2023, Alghero, Italy

Mixed-Integer Program (MIP)

A MIP is a problem of the form:

$$
\begin{array}{ll}
\min _{x \in \mathbb{R}^{n}} & c^{\top} x \\
\text { s.t. } & A x \geq b \tag{1}\\
& I \leq x \leq u \\
& x \in \mathbb{Z}^{\mathcal{I}} \times \mathbb{R}^{C} .
\end{array}
$$

$A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, I, u \in \mathbb{R}^{n}$

Mixed-Integer Program (MIP)

A MIP is a problem of the form:

$$
\begin{array}{rc}
\min _{x \in \mathbb{R}^{n}} & c^{T} x \\
\text { s.t. } & A x \geq b \tag{1}\\
& I \leq x \leq u \\
& x \in \mathbb{Z}^{\mathcal{I}} \times \mathbb{R}^{C} .
\end{array}
$$

$A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, l, u \in \mathbb{R}^{n}$

- 0-1 Integer Program (IP):

$$
\mathcal{I}=[n], l_{i}=0, u_{i}=1 \forall i \in \mathcal{I}
$$

- Mixed 0-1 IP:

$$
\mathcal{I} \subset[n], I_{i}=0, u_{i}=1 \forall i \in \mathcal{I}
$$

- Linear Programming (LP) Relaxation of (1):

$$
\mathbb{Z}^{\mathcal{I}} \rightsquigarrow \mathbb{R}^{\mathcal{I}}
$$

Motivation

- Current conflict analysis in MIP:
- as in CDCL SAT solvers (e.g., [Marques-Silva and Sakallah, 1996])
- operates on clauses extracted from the linear constraints

Motivation

- Current conflict analysis in MIP:
- as in CDCL SAT solvers (e.g., [Marques-Silva and Sakallah, 1996])
- operates on clauses extracted from the linear constraints
- Pseudo-Boolean (PB) solvers [Chai and Kuehlmann, 2005]
- extend conflict analysis to operate directly on linear constraints.

Motivation

- Current conflict analysis in MIP:
- as in CDCL SAT solvers (e.g., [Marques-Silva and Sakallah, 1996])
- operates on clauses extracted from the linear constraints
- Pseudo-Boolean (PB) solvers [Chai and Kuehlmann, 2005]
- extend conflict analysis to operate directly on linear constraints.

Can MIP benefit from PB conflict analysis?
This talk:

- Integration of PB conflict analysis for 0-1 integer programs into MIP
- Extend the algorithm by using cuts from the MIP literature
- Implement the algorithm in the MIP solver SCIP

Table of Contents

Conflict Analysis in MIP

Pseudo Boolean Conflict Analysis

Computational Results

Conclusion

Table of Contents

Conflict Analysis in MIP

Pseudo Boolean Conflict Analysis

Computational Results

Conclusion

Conflict Analysis in MIP

Goal: When branch-and-bound reaches an infeasible subproblem, analyze the infeasibility to

- extract a shorter explanation

Conflict Analysis in MIP

Goal: When branch-and-bound reaches an infeasible subproblem, analyze the infeasibility to

- extract a shorter explanation
- that prunes other parts of the tree

Conflict Analysis in MIP

Goal: When branch-and-bound reaches an infeasible subproblem, analyze the infeasibility to

- extract a shorter explanation
- that prunes other parts of the tree
- also in backtracking

Conflict Analysis in MIP

Goal: When branch-and-bound reaches an infeasible subproblem, analyze the infeasibility to

- extract a shorter explanation
- that prunes other parts of the tree
- also in backtracking

Reasons for infeasibility:

- Propagation
- LP relaxation
- Bound exceeding LP

Conflict Graph Analysis [Achterberg, 2007]

Similar to [Marques-Silva and Sakallah, 1996]

- The sequence of assignments and implications is captured by a directed implication graph

Conflict Graph Analysis [Achterberg, 2007]

Similar to [Marques-Silva and Sakallah, 1996]

- The sequence of assignments and implications is captured by a directed implication graph
- Each cut that separates the decision nodes from λ yields a conflict (FUIP, ...)

Conflict Graph Analysis [Achterberg, 2007]

Similar to [Marques-Silva and Sakallah, 1996]

- The sequence of assignments and implications is captured by a directed implication graph
- Each cut that separates the decision nodes from λ yields a conflict (FUIP, ...)

Variable assignment $\left\{\bar{x}_{15}, x_{18}\right\}$ responsible for the conflict Resolve: x_{18}

Conflict Graph Analysis [Achterberg, 2007]

Similar to [Marques-Silva and Sakallah, 1996]

- The sequence of assignments and implications is captured by a directed implication graph
- Each cut that separates the decision nodes from λ yields a conflict (FUIP, ...)

Variable assignment $\left\{\bar{x}_{15}, x_{17}\right\}$ responsible for the conflict Resolve: \bar{x}_{15}

Conflict Graph Analysis [Achterberg, 2007]

Similar to [Marques-Silva and Sakallah, 1996]

- The sequence of assignments and implications is captured by a directed implication graph
- Each cut that separates the decision nodes from λ yields a conflict (FUIP, ...)

Variable assignment $\left\{x_{14}, x_{17}\right\}$ responsible for the conflict Resolve: x_{17}

Conflict Graph Analysis [Achterberg, 2007]

Similar to [Marques-Silva and Sakallah, 1996]

- The sequence of assignments and implications is captured by a directed implication graph
- Each cut that separates the decision nodes from λ yields a conflict (FUIP, ...)

Variable assignment $\left\{x_{13}, x_{14}, x_{16}\right\}$ responsible for the conflict

Conflict Graph Analysis [Achterberg, 2007]

Similar to [Marques-Silva and Sakallah, 1996]

- The sequence of assignments and implications is captured by a directed implication graph
- Each cut that separates the decision nodes from λ yields a conflict (FUIP, ...)

Learned clause: $\bar{x}_{13} \vee \bar{x}_{14} \vee \bar{x}_{16}$
$\rightsquigarrow\left(1-x_{13}\right)+\left(1-x_{14}\right)+\left(1-x_{16}\right) \geq 1$

Conflict Graph Analysis in MIP [Achterberg, 2007]

- Technical issues: non-binary variables
- Conflict graph: bound changes instead of variable assignments
- Conflict clause \rightarrow conflict constraint (bound disjunction) e.g., conflict constraint $\left(x_{1} \geq 1\right) \vee\left(x_{3} \leq 0\right) \vee\left(x_{7} \leq 11\right)$
- What if the reason for infeasibility is the LP relaxation?
- Find "smaller" subset of bound changes that leads to the infeasible LP
- Start conflict graph analysis
- (Alternative: use LP duality theory [Witzig et al., 2019])

Table of Contents

Conflict Analysis in MIP

Pseudo Boolean Conflict Analysis

Computational Results

Conclusion

Preliminaries I

- A pseudo-Boolean constraint is a $0-1$ integer linear inequality

$$
\sum_{i \in \mathcal{N}} a_{i} \ell_{i} \geq b
$$

$a_{i} \in \mathbb{Z}_{\geq 0}$ for all $i \in \mathcal{N}, b \in \mathbb{Z}_{\geq 0}$

- ℓ_{i} denote literals, which can be either x_{i} or its negation $\bar{x}_{i}=1-x_{i}$.
- A partial assignment ρ, map from literals to 0 (falsified) or 1 (true)

Preliminaries I

- A pseudo-Boolean constraint is a $0-1$ integer linear inequality

$$
\sum_{i \in \mathcal{N}} a_{i} \ell_{i} \geq b
$$

$a_{i} \in \mathbb{Z}_{\geq 0}$ for all $i \in \mathcal{N}, b \in \mathbb{Z}_{\geq 0}$

- ℓ_{i} denote literals, which can be either x_{i} or its negation $\bar{x}_{i}=1-x_{i}$.
- A partial assignment ρ, map from literals to 0 (falsified) or 1 (true)
- The slack of a PB constraint under a partial assignment ρ : is defined as

$$
\operatorname{slack}(C, \rho):=\sum_{\{i \in \mathcal{N}: \rho(i) \neq 0\}} a_{i}-b .
$$

If the slack is negative \Longrightarrow conflict

Preliminaries I

- A pseudo-Boolean constraint is a $0-1$ integer linear inequality

$$
\sum_{i \in \mathcal{N}} a_{i} \ell_{i} \geq b
$$

$a_{i} \in \mathbb{Z}_{\geq 0}$ for all $i \in \mathcal{N}, b \in \mathbb{Z}_{\geq 0}$

- ℓ_{i} denote literals, which can be either x_{i} or its negation $\bar{x}_{i}=1-x_{i}$.
- A partial assignment ρ, map from literals to 0 (falsified) or 1 (true)
- The slack of a PB constraint under a partial assignment ρ : is defined as

$$
\operatorname{slack}(C, \rho):=\sum_{\{i \in \mathcal{N}: \rho(i) \neq 0\}} a_{i}-b .
$$

If the slack is negative \Longrightarrow conflict

- Generalized resolution rule: [Hooker, 1988]
\rightsquigarrow linear combination of two constraints that cancels a variable

Example Generalized Resolution

$$
\begin{aligned}
& C_{\text {reason }}: x_{1}+x_{2}+2 x_{3} \geq 2 \\
& C_{\text {confl }}: x_{1}+2 \bar{x}_{3}+x_{4}+x_{5} \geq 3 \\
& \rho=\left\{x_{1} \stackrel{\text { dec. }}{=} 0, x_{3} \stackrel{C_{\text {reason }}}{=} 1\right\} \Rightarrow \text { Conflict with } C_{\text {confl }}
\end{aligned}
$$

Example Generalized Resolution

$$
\begin{aligned}
& C_{\text {reason }}: x_{1}+x_{2}+2 x_{3} \geq 2 \\
& C_{\text {confl }}: x_{1}+2 \bar{x}_{3}+x_{4}+x_{5} \geq 3 \\
& \rho=\left\{x_{1} \stackrel{\text { dec. }}{=} 0, x_{3} \stackrel{C_{\text {reason }}}{=} 1\right\} \Rightarrow \text { Conflict with } C_{\text {confl }}
\end{aligned}
$$

Resolving on x_{3} :

$$
\text { resolve }\left\{x_{3}\right\} \frac{x_{1}+x_{2}+2 x_{3} \geq 2 \quad x_{1}+2 \bar{x}_{3}+x_{4}+x_{5} \geq 3}{2 x_{1}+x_{2}+x_{4}+x_{5} \geq 3}
$$

Does not explain infeasibility since it has non-negative slack

Example Generalized Resolution

$$
\begin{aligned}
& C_{\text {reason }}: x_{1}+x_{2}+2 x_{3} \geq 2 \\
& C_{\text {confl }}: x_{1}+2 \bar{x}_{3}+x_{4}+x_{5} \geq 3 \\
& \rho=\left\{x_{1} \stackrel{\text { dec. }}{=} 0, x_{3} \stackrel{C_{\text {reason }}}{=} 1\right\} \Rightarrow \text { Conflict with } C_{\text {confl }}
\end{aligned}
$$

Resolving on x_{3} :

$$
\text { resolve }\left\{x_{3}\right\} \frac{x_{1}+x_{2}+2 x_{3} \geq 2 \quad x_{1}+2 \bar{x}_{3}+x_{4}+x_{5} \geq 3}{2 x_{1}+x_{2}+x_{4}+x_{5} \geq 3}
$$

Does not explain infeasibility since it has non-negative slack

- Issue: the reason does not propagate tightly over the reals
- Can we make the reason constraint propagate tightly?

Techniques used to reduce the slack of the reason

- Weakening non falsified literals ℓ_{j} :

$$
\text { weaken }\left(\sum_{i \in \mathcal{N}} a_{i} \ell_{i} \geq b, \ell_{j}\right)=\sum_{i \neq j \in \mathcal{N}} a_{i} \ell_{i} \geq b-a_{j}
$$

- Cut Rules:
- Saturation (Coef. Tightening):

$$
\operatorname{saturate}\left(\sum_{i \in \mathcal{N}} a_{i} \ell_{i} \geq b\right)=\sum_{i \in \mathcal{N}} \min \left\{a_{i}, b\right\} \ell_{i} \geq b
$$

- Division (Chvatal-Gomory) by $d>0$:

$$
\operatorname{divide}\left(\sum_{i \in \mathcal{N}} a_{i} \ell_{i} \geq b, d\right)=\sum_{i \in \mathcal{N}}\left\lceil\frac{a_{i}}{d}\right\rceil \ell_{i} \geq\left\lceil\frac{b}{d}\right\rceil
$$

Example Generalized Resolution

$$
\begin{aligned}
& C_{\text {reason }}: x_{1}+x_{2}+2 x_{3} \geq 2 \\
& C_{\text {confl }}: x_{1}+2 \bar{x}_{3}+x_{4}+x_{5} \geq 3 \\
& \rho=\left\{x_{1} \stackrel{\text { dec. }}{=} 0, x_{3} \stackrel{C_{\text {reason }}}{=} 1\right\} \Rightarrow \text { Conflict with } C_{\text {confl }}
\end{aligned}
$$

Example Generalized Resolution

$$
\begin{aligned}
& C_{\text {reason }}: x_{1}+x_{2}+2 x_{3} \geq 2 \\
& C_{\text {confl }}: x_{1}+2 \bar{x}_{3}+x_{4}+x_{5} \geq 3 \\
& \rho=\left\{x_{1} \stackrel{\text { dec. }}{=} 0, x_{3} \stackrel{C_{\text {reason }}}{=} 1\right\} \Rightarrow \text { Conflict with } C_{\text {confl }}
\end{aligned}
$$

Weaken non-falsified variables in $C_{\text {reason }}$ other than x_{3} :

$$
\begin{aligned}
& \text { weaken }\left\{x_{2}\right\} \frac{x_{1}+x_{2}+2 x_{3} \geq 2}{x_{1}+2 x_{3} \geq 1} \\
& \text { saturate } \frac{x_{1}+2 x_{3} \geq 1}{x_{1}+x_{3} \geq 1} \\
& \text { resolve }\left\{x_{3}\right\} \quad \frac{x_{1}+x_{3} \geq 1 \quad x_{1}+2 \bar{x}_{3}+x_{4}+x_{5} \geq 3}{3 x_{1}+x_{4}+x_{5} \geq 3}
\end{aligned}
$$

Example Generalized Resolution

$$
\begin{aligned}
C_{\text {reason }}: & x_{1}+x_{2}+2 x_{3} \geq 2 \\
C_{\text {confl }}: & x_{1}+2 \bar{x}_{3}+x_{4}+x_{5} \geq 3 \\
\rho=\left\{x_{1} \stackrel{\text { dec. }}{=} 0, x_{3} \stackrel{c_{\text {reason }}}{=} 1\right\} \Rightarrow & \text { Conflict with } C_{\text {confl }}
\end{aligned}
$$

Weaken non-falsified variables in $C_{\text {reason }}$ other than x_{3} :

$$
\begin{aligned}
& \text { weaken }\left\{x_{2}\right\} \frac{x_{1}+x_{2}+2 x_{3} \geq 2}{x_{1}+2 x_{3} \geq 1} \\
& \text { saturate } \frac{x_{1}+2 x_{3} \geq 1}{x_{1}+x_{3} \geq 1} \\
& \text { resolve }\left\{x_{3}\right\} \quad \frac{x_{1}+x_{3} \geq 1 \quad x_{1}+2 \bar{x}_{3}+x_{4}+x_{5} \geq 3}{3 x_{1}+x_{4}+x_{5} \geq 3}
\end{aligned}
$$

- Now the slack is negative \rightsquigarrow conflict invariant is preserved

Conflict Analysis Algorithm

- First introduced in [Chai and Kuehlmann, 2005]

Algorithm: Generalized Resolution Conflict Analysis
Input : conflict constraint $C_{\text {conff }}$, falsifying partial assignment ρ

```
Output : learned conflict constraint Clearn
```

$C_{\text {learn }} \leftarrow C_{\text {confl }}$
while $C_{\text {learn }}$ not asserting and $C_{\text {learn }} \neq \perp$ do
$\ell_{r} \leftarrow$ literal last assigned on ρ
if ℓ_{r} propagated and $\bar{\ell}_{r}$ occurs in $C_{\text {learn }}$ then
$C_{\text {reason }} \leftarrow \operatorname{reason}\left(\ell_{r}, \rho\right)$
$C_{\text {reason }} \leftarrow \operatorname{reduce}\left(C_{\text {reason }}, C_{\text {learn }}, \ell_{r}, \rho\right)$
$C_{\text {learn }} \leftarrow \operatorname{resolve}\left(C_{\text {learn }}, C_{\text {reason }}, \ell_{r}\right)$
$\rho \leftarrow \rho \backslash\left\{\ell_{r}\right\}$
return $C_{\text {learn }}$

Conflict Analysis Algorithm

- First introduced in [Chai and Kuehlmann, 2005]

Algorithm: Generalized Resolution Conflict Analysis

Input	: conflict constraint $C_{\text {confl }}$, falsifying partial assignment ρ
Output	: learned conflict constraint $C_{\text {learn }}$

```
Output : learned conflict constraint Clearn
```

$C_{\text {learn }} \leftarrow C_{\text {confl }}$
while $C_{\text {learn }}$ not asserting and $C_{\text {learn }} \neq \perp$ do
$\ell_{r} \leftarrow$ literal last assigned on ρ
if ℓ_{r} propagated and $\bar{\ell}_{r}$ occurs in $C_{\text {learn }}$ then
$C_{\text {reason }} \leftarrow \operatorname{reason}\left(\ell_{r}, \rho\right)$
$C_{\text {reason }} \leftarrow \operatorname{reduce}\left(C_{\text {reason }}, C_{\text {learn }}, \ell_{r}, \rho\right)$
$C_{\text {learn }} \leftarrow \operatorname{resolve}\left(C_{\text {learn }}, C_{\text {reason }}, \ell_{r}\right)$
$\rho \leftarrow \rho \backslash\left\{\ell_{r}\right\}$
return $C_{\text {learn }}$

- Sat4j [Le Berre and Parrain, 2010]
- RoundingSAT [Elffers and Nordström, 2018]

Reduction Algorithm

- Goal: Make the reason constraint propagate tightly \rightsquigarrow Linear combination with $C_{\text {confl }}$ remains infeasible (our invariant holds)

Algorithm: Saturation-based Reduction Algorithm

```
Input : conflict constraint C Confl},\mathrm{ reason constraint C Creason,
    literal to resolve \ellr, partial assignment }
Output : reduced reason C Creason
while slack}((\mathrm{ resolve ( }\mp@subsup{C}{\mathrm{ reason }}{},\mp@subsup{C}{\mathrm{ confl }}{},\mp@subsup{\ell}{r}{})),\rho)\geq0\mathrm{ do
    \ellj}\leftarrow\mathrm{ non falsified literal in Creason \{片}
    Creason}\leftarrow\leftarrow\mathrm{ weaken ( }\mp@subsup{C}{\mathrm{ reason }}{},\mp@subsup{\ell}{j}{}
    Creason }\leftarrow\operatorname{saturate}(\mp@subsup{C}{\mathrm{ reason }}{}
return Creason
```


Reduction Algorithm

- Goal: Make the reason constraint propagate tightly \rightsquigarrow Linear combination with $C_{\text {confl }}$ remains infeasible (our invariant holds)

Algorithm: Saturation-based Reduction Algorithm

```
Input : conflict constraint C Confl},\mathrm{ reason constraint C Creason,
    literal to resolve \ellr, partial assignment }
Output : reduced reason C Creason
while slack((resolve( ( }\mp@subsup{C}{\mathrm{ reason }}{},\mp@subsup{C}{\mathrm{ confl }}{},\mp@subsup{\ell}{r}{})),\rho)\geq0\mathrm{ do
    \ellj}\leftarrow\mathrm{ non falsified literal in Creason \{片}
    Creason}\leftarrow\leftarrow\mathrm{ weaken ( }\mp@subsup{C}{\mathrm{ reason }}{},\mp@subsup{\ell}{j}{}
    Creason }\leftarrow\mathrm{ saturate( }\mp@subsup{C}{\mathrm{ reason }}{}
return Creason
```

- Division (CG) can be used instead of saturation [Elffers and Nordström, 2018]
- Incomparable in terms of strength [Gocht et al., 2019]

Mixed Integer Rounding (MIR)

Introduced in [Marchand and Wolsey, 2001]
Elementary mixed integer set:

$$
\begin{align*}
X:=\{(x, y) & \in \mathbb{Z} \times \mathbb{R}: \\
x & \leq b+y \tag{I}\\
y & \geq 0
\end{align*}
$$

Mixed Integer Rounding (MIR)

Introduced in [Marchand and Wolsey, 2001]
Elementary mixed integer set:
$X:=\{(x, y) \in \mathbb{Z} \times \mathbb{R}:$

$$
\begin{array}{ll}
x \leq b+y & (I) \tag{I}\\
y \geq 0
\end{array}
$$

Inequalities (I) and $(I I)$ do not suffice to describe $\operatorname{conv}(X)$.

Mixed Integer Rounding (MIR)

Disjunctive argument:

- If an inequality
is valid for X^{1} and for X^{2} it is also valid for $X^{1} \cup X^{2}$.

Mixed Integer Rounding (MIR)

Disjunctive argument:

- If an inequality
is valid for X^{1} and for X^{2} it is also valid for $X^{1} \cup X^{2}$.
Here:
- $X^{1}:$ Add $x \geq\lceil b\rceil$ (III)
- $X^{2}:$ Add $x \leq\lfloor b\rfloor(I V)$

Mixed Integer Rounding (MIR)

Inequality valid for X^{1} and for X^{2} :

$$
\underbrace{x \leq\lfloor b\rfloor+\frac{1}{1-f_{b}} y}_{(I)+f_{b}(I I I) \text { and }(I I)+\left(1-f_{b}\right)(I V)}
$$

Mixed Integer Rounding (MIR)

Inequality valid for $X^{1} \cup X^{2}=X$:

$$
\underbrace{x \leq\lfloor b\rfloor+\frac{1}{1-f_{b}} y}_{\text {MIR inequality }}
$$

Normalized MIR Cut

Let $C: \sum_{i \in \mathcal{N}} a_{i} \ell_{i} \geq b$. The Mixed Integer Rounding (MIR) Cut of C with divisor $d \in \mathbb{Z}_{>0}$ is given by the constraint

$$
\begin{equation*}
\sum_{i \in I_{1}}\left\lceil\frac{a_{i}}{d}\right\rceil \ell_{i}+\sum_{i \in I_{2}}\left(\left\lfloor\frac{a_{i}}{d}\right\rfloor+\frac{f\left(a_{i} / d\right)}{f(b / d)}\right) \ell_{i} \geq\left\lceil\frac{b}{d}\right\rceil \tag{1}
\end{equation*}
$$

where

$$
\begin{gathered}
I_{1}=\left\{i \in \mathcal{N}: f\left(a_{i} / d\right) \geq f(b / d) \text { or } f\left(a_{i} / d\right) \in \mathbb{Z}\right\}, \\
I_{2}=\left\{i^{\prime} \in \mathcal{N}: f\left(a_{i^{\prime}} / d\right)<f(b / d) \text { and } f\left(a_{i^{\prime}} / d\right) \notin \mathbb{Z}\right\},
\end{gathered}
$$

and $f(\cdot)=\cdot-\lfloor\cdot\rfloor$. To obtain a normalized version of the MIR cut, we multiply both sides of the constraint by $(b \bmod d)$.

MIR Reduction

For a partial assignment ρ and $C_{\text {reason }}: \sum_{i \in \mathcal{N}} a_{i} \ell_{i} \geq b$ propagating a literal ℓ_{r} to 1 :

1. weakening all non-falsified literal not divisible by a_{r}, and
2. Applying MIR on $C_{\text {reason }}$ with divisor $d=a_{r}$ \rightsquigarrow slack 0 .

MIR Reduction

For a partial assignment ρ and $C_{\text {reason }}: \sum_{i \in \mathcal{N}} a_{i} \ell_{i} \geq b$ propagating a literal ℓ_{r} to 1 :

1. weakening all non-falsified literal not divisible by a_{r}, and
2. Applying MIR on $C_{\text {reason }}$ with divisor $d=a_{r}$ \rightsquigarrow slack 0 .
Remarks:

- MIR-based reduction implies Division-based reduction, e.g.,

Let $\rho=\left\{x_{1}=0, x_{2}=0, x_{3}=1\right\}$ and $C_{\text {reason }}: 2 x_{1}+6 x_{2}+10 x_{3} \geq 8$:

1. Division-based reduction (divide by 10 and apply ceiling):

$$
\rightsquigarrow x_{1}+x_{2}+x_{3} \geq 1
$$

2. MIR-based reduction:
$\rightsquigarrow \frac{0.2}{0.8} x_{1}+\frac{0.6}{0.8} x_{2}+x_{3} \geq 1$

MIR Reduction

For a partial assignment ρ and $C_{\text {reason }}: \sum_{i \in \mathcal{N}} a_{i} \ell_{i} \geq b$ propagating a literal ℓ_{r} to 1 :

1. weakening all non-falsified literal not divisible by a_{r}, and
2. Applying MIR on $C_{\text {reason }}$ with divisor $d=a_{r}$ \leadsto slack 0 .
Remarks:

- MIR-based reduction implies Division-based reduction, e.g.,

Let $\rho=\left\{x_{1}=0, x_{2}=0, x_{3}=1\right\}$ and $C_{\text {reason }}: 2 x_{1}+6 x_{2}+10 x_{3} \geq 8$:

1. Division-based reduction (divide by 10 and apply ceiling):
$\rightsquigarrow x_{1}+x_{2}+x_{3} \geq 1$
2. MIR-based reduction:
$\rightsquigarrow \frac{0.2}{0.8} x_{1}+\frac{0.6}{0.8} x_{2}+x_{3} \geq 1$

- MIR/Division-based reduction is incomparable to Saturation-based reduction

Table of Contents

Conflict Analysis in MIP

Pseudo Boolean Conflict Analysis

Computational Results

Conclusion

Experimental Setup

Some implementation details:

- PB conflict analysis can be generalized for constraints with real coefficients. However, foating-point arithmetic may cause numerical issues.
To mitigate the risks:
- Stop if the coefficients of the constraints span too many orders of magnitude
- Remove variables with too small coefficients

Experimental Setup

Some implementation details:

- PB conflict analysis can be generalized for constraints with real coefficients.

However, foating-point arithmetic may cause numerical issues.
To mitigate the risks:

- Stop if the coefficients of the constraints span too many orders of magnitude
- Remove variables with too small coefficients

Setup:

- Implemented all techniques in the open source MIP solver SCIP.
- Performance variability is a key concern in MIP literature. \rightsquigarrow use a large and diverse test set of instances and multiple seeds.
- 195 pure 0-1 models from the MIPLIB2017 collection $\times 5$ seeds.

Computational Results

	Settings	solved	time(s)	\# nodes	time quot	nodes quot
all(975)	Graph	405	603.55	682.31	1.0	1.0
	Division	419	601.4	683.48	1.0	1.0
	MIR	420	599.37	677.04	0.99	0.99
	Saturation	418	599.76	691.81	0.99	1.01
	Graph	263	121.21	753.96	1.0	1.0
	Division	277	117.82	682.43	0.97	0.91
	MIR	278	116.91	675.11	0.96	0.90
	Saturation	276	116.71	710.72	0.96	0.94
affected and	Graph	254	81.47	507.23	1.0	1.0
all-optimal(254)	Division	254	82.87	482.61	1.02	0.95
	MIR	254	81.43	468.57	1.0	0.92
	Saturation	254	80.21	485.52	0.98	0.96

Computational Results

	Settings	solved	time(s)	\# nodes	time quot	nodes quot
all(975)	Graph	405	603.55	682.31	1.0	1.0
	Division	419	601.4	683.48	1.0	1.0
	MIR	420	599.37	677.04	0.99	0.99
	Saturation	418	599.76	691.81	0.99	1.01
	Graph	263	121.21	753.96	1.0	1.0
	Division	277	117.82	682.43	0.97	0.91
	MIR	278	116.91	675.11	0.96	0.90
	Saturation	276	116.71	710.72	0.96	0.94
affected and	Graph	254	81.47	507.23	1.0	1.0
all-optimal(254)	Division	254	82.87	482.61	1.02	0.95
	MIR	254	81.43	468.57	1.0	0.92
	Saturation	254	80.21	485.52	0.98	0.96

- "MIR" leads always to smaller search trees

Computational Results

	Settings	solved	time(s)	\# nodes	time quot	nodes quot
all(975)	Graph	405	603.55	682.31	1.0	1.0
	Division	419	601.4	683.48	1.0	1.0
	MIR	420	599.37	677.04	0.99	0.99
	Saturation	418	599.76	691.81	0.99	1.01
	Graph	263	121.21	753.96	1.0	1.0
	Division	277	117.82	682.43	0.97	0.91
	MIR	278	116.91	675.11	0.96	0.90
	Saturation	276	116.71	710.72	0.96	0.94
affected and	Graph	254	81.47	507.23	1.0	1.0
all-optimal(254)	Division	254	82.87	482.61	1.02	0.95
	MIR	254	81.43	468.57	1.0	0.92
	Saturation	254	80.21	485.52	0.98	0.96

"MIR" leads always to smaller search trees
"MIR" vs "No Conflict Analysis" on 279 affected instances:
+25 solved, 27% faster, 37% smaller trees

Computational Results

	Settings	solved	time(s)	\# nodes	time quot	nodes quot
all(975)	Graph	405	603.55	682.31	1.0	1.0
	Division	419	601.4	683.48	1.0	1.0
	MIR	420	599.37	677.04	0.99	0.99
	Saturation	418	599.76	691.81	0.99	1.01
	Graph	263	121.21	753.96	1.0	1.0
	Division	277	117.82	682.43	0.97	0.91
	MIR	278	116.91	675.11	0.96	0.90
	Saturation	276	116.71	710.72	0.96	0.94
affected and	Graph	254	81.47	507.23	1.0	1.0
all-optimal(254)	Division	254	82.87	482.61	1.02	0.95
	MIR	254	81.43	468.57	1.0	0.92
	Saturation	254	80.21	485.52	0.98	0.96

"MIR" leads always to smaller search trees

- "MIR" vs "No Conflict Analysis" on 279 affected instances:
+ 25 solved, 27% faster, 37% smaller trees
- Still requires further investigation: weakening, choose best cut, ...

Table of Contents

Conflict Analysis in MIP

Pseudo Boolean Conflict Analysis

Computational Results

Conclusion

Conclusion

In this work:

- We studied the integration of PB conflict analysis into a MIP solving framework.
- We strengthened the PB conflict analysis further by using MIR cuts.

Conclusion

In this work:

- We studied the integration of PB conflict analysis into a MIP solving framework.
- We strengthened the PB conflict analysis further by using MIR cuts.

Next Steps:

- Dynamically choose the best strengthening method?
- Post-Process the final learned constraint
- remove irrelevant variables
e.g., $3 x_{1}+x_{4}+x_{5} \geq 3$ can be strengthened to $x_{1} \geq 1$
- Complement variables (e.g., replacing x_{i} by $1-\bar{x}_{i}$) before CG/MIR
- Generalize to $0-1$ mixed IPs

Conclusion

In this work:

- We studied the integration of PB conflict analysis into a MIP solving framework.
- We strengthened the PB conflict analysis further by using MIR cuts.

Next Steps:

- Dynamically choose the best strengthening method?
- Post-Process the final learned constraint
- remove irrelevant variables
e.g., $3 x_{1}+x_{4}+x_{5} \geq 3$ can be strengthened to $x_{1} \geq 1$
\rightarrow Complement variables (e.g., replacing x_{i} by $1-\bar{x}_{i}$) before CG/MIR
- Generalize to $0-1$ mixed IPs

Thank you for your attention!

Questions?
mexi@zib.de

回 Achterberg，T．（2007）．
Conflict analysis in mixed integer programming．
Discrete Optimization，4（1）：4－20．
國 Chai，D．and Kuehlmann，A．（2005）．
A fast pseudo－Boolean constraint solver．
volume 24，pages 305－317．
Preliminary version in DAC＇03．
Elifers，J．and Nordström，J．（2018）．
Divide and conquer：Towards faster pseudo－Boolean solving．
In Proceedings of the 27th International Joint Conference on Artificial Intelligence（IJCAI＇18），pages 1291－1299．
－Gocht，S．，Nordström，J．，and Yehudayoff，A．（2019）．
On division versus saturation in pseudo－Boolean solving．
In Proceedings of the 28th International Joint Conference on Artificial Intelligence（IJCAI＇19），pages 1711－1718．
圊 Hooker，J．N．（1988）．
Generalized resolution and cutting planes．
Annals of Operations Research，12（1）：217－239．

Le Berre, D. and Parrain, A. (2010).
The Sat4j library, release 2.2.
Journal on Satisfiability, Boolean Modeling and Computation, 7(2-3):59-64.
Marchand, H. and Wolsey, L. A. (2001).
Aggregation and mixed integer rounding to solve mips.
Operations research, 49(3):363-371.
(Marques-Silva, J. P. and Sakallah, K. A. (1996).
GRASP—a new search algorithm for satisfiability.
In Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design (ICCAD '96), pages 220-227.
Witzig, J., Berthold, T., and Heinz, S. (2019).
Computational aspects of infeasibility analysis in mixed integer programming. Technical Report 19-54, ZIB, Takustr. 7, 14195 Berlin.

