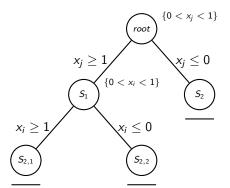
On Performance Variability in Pseudo-Boolean Solving and the Impact of Trivial Model Simplifications

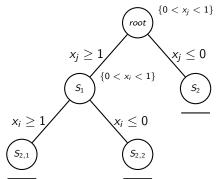
Ambros Gleixner^{1,2}, Alexander Hoen¹, Jakob Nordström^{3,4}

¹Zuse Institute Berlin ²HTW Berlin ³Lund University ⁴University of Copenhagen hoen@zib.de Pragmatics of SAT 4th July 2023



iversity of Applied Sciences

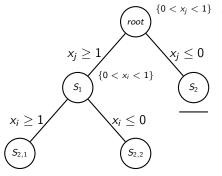
Presolving on MIP solvers



Gleixner, Hoen, Nordström

¹Achterberg et al. 2019.

Presolving on MIP solvers



Goals:

- reducing the number of potential nodes in the b&b tree
- reducing the node solving time
- provide numerical robustness

¹Achterberg et al. 2019.

Presolving on MIP solvers

Goals:

- reducing the number of potential nodes in the b&b tree
- reducing the node solving time
- provide numerical robustness

Impact on MIP: speed-up factor of 9 for instance with solving time $\geq 10~{\rm seconds^1}$. What is the impact on a PB solver?

¹Achterberg et al. 2019.

- Parallel Presolve in Integer in Linear Optimization
- solver independent implementation: provides pre- and postsolving routines
- exploit parallel hardware
- supports multiprecision arithmetic
- proof logging with VERIPB soon available
- available at https://github.com/scipopt/papilo

ZIB

²Gleixner, Gottwald, and Hoen 2023.

 PaPILO has 14 presolvers, 11 apply for PB problems.

- Coefficient Strengthening
- (Domain) Propagation
- Dominated Variables
- Dual Fix
- Dual Infer (continuous only)
- Implied integer variables (continuous only)
- Parallel Variables (integer only version exists)

- Parallel Constraints
- (Simple) Probing
- Singleton Variable/Stuffing
- Sparsify
- (Simple) Substitution
- Trivial (Model Clean Up)

- Timelimit: 1800 seconds
- Testset: PB16 + 5 permutations of PB16
- ► Solvers: ROUNDINGSAT and PAPILO + ROUNDINGSAT
- $\blacktriangleright \ge t$ sec: one of the two solvers solved the instances in $\ge t$ seconds

ZIB

PAPILO barely impacts the performance of ROUNDINGSAT.

			Round	INGSAT	Η	PAPILO + ROUNDINGSAT				
		instances	solved	solved time		solved time		cons%		
dec	$\begin{array}{l} \text{all} \\ \geq 10 \text{sec} \\ \geq 100 \text{sec} \\ \geq 1000 \text{sec} \end{array}$	5361 858 595 232	3713 792 529 166	25.86 157.34 388.49 888.20	3700 779 516 153	24.59 168.28 395.03 973.09	39 16 17 20	32 13 15 17		
opt	$\begin{array}{l} all \\ \geq 10 sec \\ \geq 100 sec \\ \geq 1000 sec \end{array}$	2628 338 244 144	1648 294 200 100	37.29 163.46 471.92 728.14	1642 288 194 94	44.30 198.00 475.19 848.73	38 30 27 25	31 25 23 19		

Table 1: Impact of PaPILO on the performance of $\operatorname{RoundingSAT}$ with 1800 seconds on $\operatorname{PB16}$

$\operatorname{ROUNDINGSAT}$ gains a speed-up by PAPILO on instances solved by both solvers.

			RoundingSAT		Η	PAPILO + ROUNDINGSAT				
		instances	solved	time	solved	time	vars%	cons%		
dec	$\geq 10 \sec$	713	713	111.63	713	116.83	14	11		
	$\geq 100 \sec$	450	450	302.46	450	292.34	15	12		
	$\geq 1000 \sec$	87	87	967.01	87	923.22	13	11		
opt	$\geq 10 \sec$	244	244	92.84	244	108.77	33	28		
	$\geq 100 \sec$	150	150	367.01	150	311.59	29	26		
	$\geq 1000 \sec$	50	50	774.39	50	712.99	28	22		

Table 2: Impact of PaPILO on the performance of $\operatorname{RoundingSAT}$ with 1800 seconds on $\operatorname{PB16}$

Experimental results on Presolving- unpermuted

			Rouni	DINGSAT	PAPILO + ROUNDINGSAT			
		instances	solved	time	solved	time	vars%	cons%
dec unpermuted	all ≥ 10 sec ≥ 100 sec ≥ 1000 sec ≥ 1000 sec	5361 858 595 232 42	3713 792 529 166 26	25.86 157.34 388.49 888.20 1162.29	3700 779 516 153 32	24.59 168.28 395.03 973.09 861.31	39 16 17 20 17	32 13 15 17 19
opt unpermuted	$\begin{array}{l} \text{all} \\ \geq 10 \text{sec} \\ \geq 100 \text{sec} \\ \geq 1000 \text{sec} \\ \geq 1000 \text{sec} \end{array}$	2628 338 244 144 18	1648 294 200 100 12	37.29 163.46 471.92 728.14 1069.28	1642 288 194 94 13	44.30 198.00 475.19 848.73 785.53	38 30 27 25 21	31 25 23 19 29

Table 3: Impact of PaPILO on the performance of $\operatorname{ROUNDINGSAT}$ with 1800 seconds on $\operatorname{PB16}$

Definition:

Seemingly inconsequential changes can cause significant differences in performance.

Definition:

Seemingly inconsequential changes can cause significant differences in performance.

For one model, let X_1, \ldots, X_n be the solving times for the *n* permutations, where X_1 is reserved for the unpermuted "default" version of the model:

ZIB

		models	solved	time	VS	spread	freq
RS	$\begin{array}{l} \text{all} \\ \geq 10 \text{sec} \\ \geq 100 \text{sec} \\ \geq 1000 \text{sec} \\ \geq 1800 \text{sec} \end{array}$	1398 301 181 82 60	1089.8 268.8 148.8 49.8 27.8	15.24 101.43 315.27 846.66 1003.95	0.13 0.43 0.46 0.48 0.44	2.04 107.64 369.71 1073.54 1125.54	0.02 0.09 0.15 0.33 0.45
SCIP	$\begin{array}{l} \text{all} \\ \geq 10 \text{sec} \\ \geq 100 \text{sec} \\ \geq 1000 \text{sec} \\ \geq 1800 \text{sec} \end{array}$	1397 206 146 76 50	736.3 174.3 115.3 45.3 19.3	76.63 180.72 463.77 1045.86 1055.56	0.08 0.38 0.37 0.33 0.38	$1.19 \\ 137.31 \\ 331.21 \\ 610.75 \\ 658.41$	0.01 0.10 0.14 0.27 0.41

Table 4: Variability statistics on decision models for SCIP and ROUNDINGSAT.

Visualization of the variability results on decision

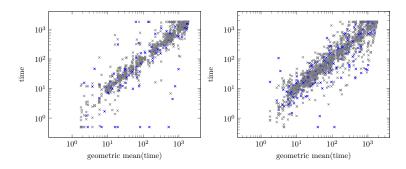


Figure 1: Distribution of running times for SCIP (left) and ROUNDINGSAT (right) on PB16 dec with filter " \geq 10 sec". Each \times marks a permutation of a model. The y-axis gives the time for each of these instances and the x-axis gives the shifted geometric mean of runtimes of all permutations of a model. Unpermuted models (Permutation 1) are marked in blue

		models	solved	time	VS	spread	freq
RS	$\begin{array}{l} \text{all} \\ \geq 10 \text{sec} \\ \geq 100 \text{sec} \\ \geq 1000 \text{sec} \\ \geq 1800 \text{sec} \end{array}$	532 86 73 59 52	295.2 59.2 46.2 32.2 25.2	60.35 220.82 366.29 432.03 485.71	0.13 0.62 0.65 0.68 0.63	$\begin{array}{r} 2.01 \\ 561.12 \\ 1043.05 \\ 1430.93 \\ 1472.21 \end{array}$	0.04 0.28 0.33 0.40 0.46
SCIP		532 187 137 41 26	325.2 173.2 123.2 27.2 12.2	116.27 190.91 364.13 1047.99 1075.84	0.11 0.27 0.30 0.31 0.35	4.74 125.38 260.32 621.46 601.38	0.02 0.07 0.09 0.30 0.47

Table 5: Variability statistics on optimization models for SCIP and ROUNDINGSAT.

Visualization of the variability results on optimization

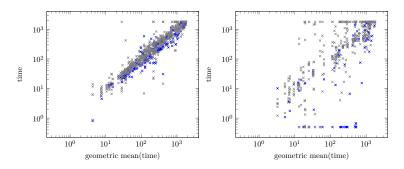


Figure 2: Distribution of running times for SCIP (left) and ROUNDINGSAT (right) on PB16 opt with filter " \geq 10 sec". Each \times marks a permutation of a model. The y-axis gives the time for each of these instances and the x-axis gives the shifted geometric mean of runtimes of all permutations of a model. Unpermuted models (Permutation 1) are marked in blue

- Presolving is one of the most important heuristics in mixed-integer programming.
- The majority of these techniques are also suited for pseudo-boolean problems.
- Time-limit is too small to show if Presolving helps on harder instances.
- Overall PAPILO barely affects the performance of ROUNDINGSAT.
- ▶ Presolving helps ROUNDINGSAT on specific subsets instances (all-optimal).
- Performance Variability may impacts the effect of presolving.

Thank you for your attention!

Questions?